• 全国中文核心期刊
  • 中国科技核心期刊
  • 美国工程索引(EI)收录期刊
  • Scopus数据库收录期刊

水泥胶凝砂土动力特性研究

韩华强, 陈生水, 傅华, 郑澄锋, 凌华, 石北啸

韩华强, 陈生水, 傅华, 郑澄锋, 凌华, 石北啸. 水泥胶凝砂土动力特性研究[J]. 岩土工程学报, 2016, 38(z2): 54-60. DOI: 10.11779/CJGE2016S2009
引用本文: 韩华强, 陈生水, 傅华, 郑澄锋, 凌华, 石北啸. 水泥胶凝砂土动力特性研究[J]. 岩土工程学报, 2016, 38(z2): 54-60. DOI: 10.11779/CJGE2016S2009
HAN Hua-qiang, CHEN Sheng-shui, FU Hua, ZHENG Cheng-feng, LING Hua, SHI Bei-xiao. Experimental study on dynamic properties of cemented sand[J]. Chinese Journal of Geotechnical Engineering, 2016, 38(z2): 54-60. DOI: 10.11779/CJGE2016S2009
Citation: HAN Hua-qiang, CHEN Sheng-shui, FU Hua, ZHENG Cheng-feng, LING Hua, SHI Bei-xiao. Experimental study on dynamic properties of cemented sand[J]. Chinese Journal of Geotechnical Engineering, 2016, 38(z2): 54-60. DOI: 10.11779/CJGE2016S2009

水泥胶凝砂土动力特性研究  English Version

基金项目: 国家自然科学基金重大研究计划集成项目(91215301); 国家自然科学基金重点项目(51539006); 国家自然科学基金青年基金项目(51309161)
详细信息
    作者简介:

    韩华强(1978- ),男,高级工程师,博士,主要从事岩土工程基本理论和应用研究。E-mail: hqhan@nhri.cn。

Experimental study on dynamic properties of cemented sand

  • 摘要: 通过室内动三轴试验研究了砂土与水泥胶凝砂土在不同应力条件下的动力变形特性及抗液化特性,结果表明:胶凝材料的掺入显著提高了砂土在动荷载作用下抵抗变形的能力,在较低水泥掺加量条件下,胶凝砂土中砂土的动力特性仍占据主导地位,其动力特性仍可用沈珠江提出的砂土动力黏弹性模型来模拟;胶凝砂土的动模量比砂土大3倍以上,而抗液化动剪应力则为砂土的2倍以上,但初始变形量及累计动残余变形量值均较砂土大幅降低;胶凝作用对低应力状态更为敏感,应力水平越低,胶凝作用对砂土抵抗动力变形能力的提高越显著,随着胶凝材料掺入,浅层砂土已很难发生地震液化,深层砂土的液化破坏主要为变形破坏,但破坏时也累积了较大的动孔隙水压力。
    Abstract: The dynamic properties and anti-liquefaction characteristics of sands and cemented sand (CS) are comparatively studied by using lab dynamic triaxial shear tests. It is shown that the capability of sand to resist deformation under dynamic load is significantly improved by adding cementing materials. Under lower adding of cementing materials, the dynamic properties of sands still play a leading role in CS, and they can be calculated using the dynamic constitutive model proposed by Zhujiang Shen. The dynamic modulus of CS is increased by more than 3 times and the anti-liquefaction dynamic shear stress by over 2 times than those of sand, while the initial deformation and the cumulative dynamic permanent deformation significantly decrease. Compared with high confining pressure and consolidation stress, the cemented action is more sensitive to lower stress state. The lower the stress state, the more obvious the effect of the cemented action to improve the capability of sand to resist deformation under dynamic load. With the adding of cementing materials, earthquake liquefaction of the shallow sand hardly occurs, and the liquefaction failure of deep sand is mainly deformation one with more cumulative dynamic pore water pressure.
  • [1] 徐静波. 水泥搅拌砂土强度特性及搅拌桩复合地基路基沉降研究[D]. 兰州: 兰州交通大学, 2014. (XU Jing-bo. Research on the strength characteristics of cement-sand-soil and settlement of mixing pile composite foundation[D]. Lanzhou: Lanzhou Jiaotong University, 2014. (in Chinese))
    [2] 徐至钧, 曹名葆. 水泥土搅拌法处理地基[M]. 北京: 机械工业出版社, 2004. (XU Zhi-jun, CAO Ming-bao. Foundation treatment using mixed-in-place pile[M]. Beijing: China Machine Press, 2004. (in Chinese))
    [3] KAMATA H, AKUTSU H. Deep mixing method for site experience[J]. Pro of the Journal of Japanese Society of Soil Mechanical and Foundation Engineering, Tsuchi to Kiso, 1976, 24(12): 43-50.
    [4] ALLEN J D, REESE L C. Small scale tests for the determination of p - y curves in layered soil[J]. OTC, 1980: 31-37.
    [5] 龚晓南. 复合地基理论及工程应用[M]. 北京: 中国建筑工业出版社, 2002.(GONG Xiao-nan, Theory of composite foundation and engineering application[M]. Beijing: China Architecture and Building Press, 2002. (in Chinese))
    [6] WANG Y H, LEUNG S C. A particulate-scale investigation of cemented sand behavior[J]. Journal of Geotechnical and Geoenvironmental Engineering, 2008, 45(1): 29-44.
    [7] 王 丽, 鲁晓兵, 王淑云, 等. 钙质砂的胶结性及对力学性质影响的实验研究[J]. 实验力学, 2009, 24(2): 133-143. (WANG Li, LU Xiao-bing, WANG Shu-yun, et al. Experimental study on cementing properties of calcareous sand and its influence of mechanical properties[J]. Journal of Experimental Mechanics, 2009, 24(2): 133-143. (in Chinese))
    [8] 赵 灿. 人工胶结砂力学性能及其本构模型试验研究[D].武汉: 湖北工业大学, 2013. (ZHAO Can. Experimental research on mechanics and constitutive model of artificially cemented sand[D]. Wuhan: Hubei University of Technology, 2013. (in Chinese))
    [9] 汤怡新, 刘汉龙, 朱 伟. 水泥固化土工程特性试验研究[J]. 岩土工程学报, 2000, 22(5): 549-553. (TANG Yi-xin,LIU Han-long, ZHU Wei. Study on engineering properties of cement-stabilized soil[J]. Chinese Journal of Geotechnical Engineering, 2000, 22(5): 549-553. (in Chinese))
    [10] 王海龙, 申向东, 王萧萧, 等. 水泥砂浆复合土力学性能及微观结构的试验研究[J]. 岩石力学与工程学报, 2012, 31(增刊1): 3264-3269. (WANG Hai-long, SHEN Xiang- dong, WANG Xiao-xiao, et al. Experimental research of mechanical properties and microstructure for cement mortar composite soil[J]. Chinese Journal of Rock Mechanics and Engineering, 2012, 31(S1): 3264-3269. (in Chinese))
    [11] 刘 忠, 朱俊高, 刘汉龙. 水泥砾质土三轴试验研究[J]. 岩土力学, 2012, 33(7): 2013-2020. (LIU Zhong, ZHU Jun-gao, LIU Han-long. Experimental study of cemented gravelly soil by triaxial test[J]. Rock and Soil Mechanics, 2012, 33(7): 2013-2020.( in Chinese))
    [12] 曹友杰. 河南郑东新区可液化土的特征及抗液化措施研究[D]. 北京: 中国地质大学, 2012. (CAO You-jie. A study of the characteristics of liquefiabie sails and anti-liquefaction measurements in the Zhengdang New District, Henan[D]. Beijing: China University of Geosciences, 2012. ( in Chinese))
    [13] 李华明. 高速铁路饱和粉土液化地基抗震加固试验研究[D]. 成都: 西南交通大学, 2012. (LI Hua-ming. Research on seismic reinforcement of saturated silt liquefied foundation of high-speed railway[D]. Chengdu: Southeast Jiaotong University, 2012. (in Chinese))
    [14] 付恩怀, 高海涛. 金川水电站坝基砂层透镜体震动液化评价及工程措施[J]. 西北水电, 2014(1): 15-18. (FU En-huai, GAO Hai-tao. Assessment and engineering measures for vibration liquefaction of sand-layer lens in dam foundation, Jinchuan Hydropower Project[J]. Northwest Hydropower, 2014(1): 15-18. ( in Chinese))
    [15] 高玉峰, 王庶懋, 王 伟. 砂土与 EPS 颗粒混合的轻质土的动剪切模量衰减特性分析[J], 岩土力学, 2007, 28(5): 1001-1004. (GAO Yu-feng, WANG Shu-mao, WANG Wei. Test study on deformation characteristics of lightweight sand-EPS beads soil under dynamic load[J]. Rock and Soil Mechanics, 2007, 28(5): 1001-1004. ( in Chinese))
    [16] 胡舜娥. 水泥固化滨海风积砂动三轴试验与理论模型研究[D]. 厦门: 华侨大学, 2014. (HU Shun-e. Dynamic triaxial experiment and theoretical model of cement stabilized coastal aeolian sand[D]. Xiamen: Huaqiao University, 2014. (in Chinese))
    [17] 傅 华, 陈生水, 韩华强, 等. 胶凝砂砾石料静动力三轴剪切试验研究[J]. 岩土工程学报, 2015, 37(2): 357-362. (FU Hua, CHEN Sheng-Shui, HAN Hua-qiang, et al. Experimental study on static and dynamic properties of cemented sand and gravel[J]. Chinese Journal of Geotechnical Engineering, 2015, 37(2): 357-362. (in Chinese))
    [18] 沈珠江, 徐 刚. 堆石料的动力变形特性[J]. 水利水运科学研究, 1996, 6(2): 143-150. (SHEN Zhu-jiang, XU Gang. Deformation behavior of rock materials under cyclic loading[J]. Journal of Nanjing Hydraulic Research Institute, 1996, 6(2): 143-150. (in Chinese))
    [19] 陈生水, 霍家平, 章为民. “5.12”汶川地震对紫坪铺混凝土面板坝的影响及原因分析[J]. 岩土工程学报, 2008, 30(6): 795-801. (CHEN Sheng-shui, HUO Jia-ping, ZHANG Wei-min. Analysis of effects of “5.12” Wenchuan Earthquake on Zipingpu Concrete Face Rock-fill Dam[J]. Chinese Journal of Geotechnical Engineering, 2008, 30(6): 795-801. (in Chinese))
    [20] 赵剑明, 刘小生, 温彦锋, 等. 紫坪铺大坝汶川地震震害分析及高土石坝抗震减灾研究设想[J]. 水力发电, 2009, 35(5): 11-14. (ZHAO Jian-ming, LIU Xiao-sheng, WEN Yan-feng, et al. Analysis of earthquake damage of the Zipingpu Dam in Wenchuan Earthquake and the study proposal on the anti-earthquake and disaster reduction of high earth-rock dam[J]. Water Power, 2009, 35(5): 11-14. (in Chinese))
  • 期刊类型引用(1)

    1. 凌跃,刘元雪,赵久彬,白云山,赵智宏,王云潇,张左群. 基于大数据的砂土滞后性计算模型研究. 计算机与数字工程. 2022(06): 1298-1305 . 百度学术

    其他类型引用(3)

计量
  • 文章访问数:  435
  • HTML全文浏览量:  3
  • PDF下载量:  294
  • 被引次数: 4
出版历程
  • 收稿日期:  2016-05-18
  • 发布日期:  2016-10-19

目录

    /

    返回文章
    返回