• 全国中文核心期刊
  • 中国科技核心期刊
  • 美国工程索引(EI)收录期刊
  • Scopus数据库收录期刊
HAN Hua-qiang, CHEN Sheng-shui, FU Hua, ZHENG Cheng-feng, LING Hua, SHI Bei-xiao. Experimental study on dynamic properties of cemented sand[J]. Chinese Journal of Geotechnical Engineering, 2016, 38(z2): 54-60. DOI: 10.11779/CJGE2016S2009
Citation: HAN Hua-qiang, CHEN Sheng-shui, FU Hua, ZHENG Cheng-feng, LING Hua, SHI Bei-xiao. Experimental study on dynamic properties of cemented sand[J]. Chinese Journal of Geotechnical Engineering, 2016, 38(z2): 54-60. DOI: 10.11779/CJGE2016S2009

Experimental study on dynamic properties of cemented sand

More Information
  • Received Date: May 18, 2016
  • Published Date: October 19, 2016
  • The dynamic properties and anti-liquefaction characteristics of sands and cemented sand (CS) are comparatively studied by using lab dynamic triaxial shear tests. It is shown that the capability of sand to resist deformation under dynamic load is significantly improved by adding cementing materials. Under lower adding of cementing materials, the dynamic properties of sands still play a leading role in CS, and they can be calculated using the dynamic constitutive model proposed by Zhujiang Shen. The dynamic modulus of CS is increased by more than 3 times and the anti-liquefaction dynamic shear stress by over 2 times than those of sand, while the initial deformation and the cumulative dynamic permanent deformation significantly decrease. Compared with high confining pressure and consolidation stress, the cemented action is more sensitive to lower stress state. The lower the stress state, the more obvious the effect of the cemented action to improve the capability of sand to resist deformation under dynamic load. With the adding of cementing materials, earthquake liquefaction of the shallow sand hardly occurs, and the liquefaction failure of deep sand is mainly deformation one with more cumulative dynamic pore water pressure.
  • [1]
    徐静波. 水泥搅拌砂土强度特性及搅拌桩复合地基路基沉降研究[D]. 兰州: 兰州交通大学, 2014. (XU Jing-bo. Research on the strength characteristics of cement-sand-soil and settlement of mixing pile composite foundation[D]. Lanzhou: Lanzhou Jiaotong University, 2014. (in Chinese))
    [2]
    徐至钧, 曹名葆. 水泥土搅拌法处理地基[M]. 北京: 机械工业出版社, 2004. (XU Zhi-jun, CAO Ming-bao. Foundation treatment using mixed-in-place pile[M]. Beijing: China Machine Press, 2004. (in Chinese))
    [3]
    KAMATA H, AKUTSU H. Deep mixing method for site experience[J]. Pro of the Journal of Japanese Society of Soil Mechanical and Foundation Engineering, Tsuchi to Kiso, 1976, 24(12): 43-50.
    [4]
    ALLEN J D, REESE L C. Small scale tests for the determination of p - y curves in layered soil[J]. OTC, 1980: 31-37.
    [5]
    龚晓南. 复合地基理论及工程应用[M]. 北京: 中国建筑工业出版社, 2002.(GONG Xiao-nan, Theory of composite foundation and engineering application[M]. Beijing: China Architecture and Building Press, 2002. (in Chinese))
    [6]
    WANG Y H, LEUNG S C. A particulate-scale investigation of cemented sand behavior[J]. Journal of Geotechnical and Geoenvironmental Engineering, 2008, 45(1): 29-44.
    [7]
    王 丽, 鲁晓兵, 王淑云, 等. 钙质砂的胶结性及对力学性质影响的实验研究[J]. 实验力学, 2009, 24(2): 133-143. (WANG Li, LU Xiao-bing, WANG Shu-yun, et al. Experimental study on cementing properties of calcareous sand and its influence of mechanical properties[J]. Journal of Experimental Mechanics, 2009, 24(2): 133-143. (in Chinese))
    [8]
    赵 灿. 人工胶结砂力学性能及其本构模型试验研究[D].武汉: 湖北工业大学, 2013. (ZHAO Can. Experimental research on mechanics and constitutive model of artificially cemented sand[D]. Wuhan: Hubei University of Technology, 2013. (in Chinese))
    [9]
    汤怡新, 刘汉龙, 朱 伟. 水泥固化土工程特性试验研究[J]. 岩土工程学报, 2000, 22(5): 549-553. (TANG Yi-xin,LIU Han-long, ZHU Wei. Study on engineering properties of cement-stabilized soil[J]. Chinese Journal of Geotechnical Engineering, 2000, 22(5): 549-553. (in Chinese))
    [10]
    王海龙, 申向东, 王萧萧, 等. 水泥砂浆复合土力学性能及微观结构的试验研究[J]. 岩石力学与工程学报, 2012, 31(增刊1): 3264-3269. (WANG Hai-long, SHEN Xiang- dong, WANG Xiao-xiao, et al. Experimental research of mechanical properties and microstructure for cement mortar composite soil[J]. Chinese Journal of Rock Mechanics and Engineering, 2012, 31(S1): 3264-3269. (in Chinese))
    [11]
    刘 忠, 朱俊高, 刘汉龙. 水泥砾质土三轴试验研究[J]. 岩土力学, 2012, 33(7): 2013-2020. (LIU Zhong, ZHU Jun-gao, LIU Han-long. Experimental study of cemented gravelly soil by triaxial test[J]. Rock and Soil Mechanics, 2012, 33(7): 2013-2020.( in Chinese))
    [12]
    曹友杰. 河南郑东新区可液化土的特征及抗液化措施研究[D]. 北京: 中国地质大学, 2012. (CAO You-jie. A study of the characteristics of liquefiabie sails and anti-liquefaction measurements in the Zhengdang New District, Henan[D]. Beijing: China University of Geosciences, 2012. ( in Chinese))
    [13]
    李华明. 高速铁路饱和粉土液化地基抗震加固试验研究[D]. 成都: 西南交通大学, 2012. (LI Hua-ming. Research on seismic reinforcement of saturated silt liquefied foundation of high-speed railway[D]. Chengdu: Southeast Jiaotong University, 2012. (in Chinese))
    [14]
    付恩怀, 高海涛. 金川水电站坝基砂层透镜体震动液化评价及工程措施[J]. 西北水电, 2014(1): 15-18. (FU En-huai, GAO Hai-tao. Assessment and engineering measures for vibration liquefaction of sand-layer lens in dam foundation, Jinchuan Hydropower Project[J]. Northwest Hydropower, 2014(1): 15-18. ( in Chinese))
    [15]
    高玉峰, 王庶懋, 王 伟. 砂土与 EPS 颗粒混合的轻质土的动剪切模量衰减特性分析[J], 岩土力学, 2007, 28(5): 1001-1004. (GAO Yu-feng, WANG Shu-mao, WANG Wei. Test study on deformation characteristics of lightweight sand-EPS beads soil under dynamic load[J]. Rock and Soil Mechanics, 2007, 28(5): 1001-1004. ( in Chinese))
    [16]
    胡舜娥. 水泥固化滨海风积砂动三轴试验与理论模型研究[D]. 厦门: 华侨大学, 2014. (HU Shun-e. Dynamic triaxial experiment and theoretical model of cement stabilized coastal aeolian sand[D]. Xiamen: Huaqiao University, 2014. (in Chinese))
    [17]
    傅 华, 陈生水, 韩华强, 等. 胶凝砂砾石料静动力三轴剪切试验研究[J]. 岩土工程学报, 2015, 37(2): 357-362. (FU Hua, CHEN Sheng-Shui, HAN Hua-qiang, et al. Experimental study on static and dynamic properties of cemented sand and gravel[J]. Chinese Journal of Geotechnical Engineering, 2015, 37(2): 357-362. (in Chinese))
    [18]
    沈珠江, 徐 刚. 堆石料的动力变形特性[J]. 水利水运科学研究, 1996, 6(2): 143-150. (SHEN Zhu-jiang, XU Gang. Deformation behavior of rock materials under cyclic loading[J]. Journal of Nanjing Hydraulic Research Institute, 1996, 6(2): 143-150. (in Chinese))
    [19]
    陈生水, 霍家平, 章为民. “5.12”汶川地震对紫坪铺混凝土面板坝的影响及原因分析[J]. 岩土工程学报, 2008, 30(6): 795-801. (CHEN Sheng-shui, HUO Jia-ping, ZHANG Wei-min. Analysis of effects of “5.12” Wenchuan Earthquake on Zipingpu Concrete Face Rock-fill Dam[J]. Chinese Journal of Geotechnical Engineering, 2008, 30(6): 795-801. (in Chinese))
    [20]
    赵剑明, 刘小生, 温彦锋, 等. 紫坪铺大坝汶川地震震害分析及高土石坝抗震减灾研究设想[J]. 水力发电, 2009, 35(5): 11-14. (ZHAO Jian-ming, LIU Xiao-sheng, WEN Yan-feng, et al. Analysis of earthquake damage of the Zipingpu Dam in Wenchuan Earthquake and the study proposal on the anti-earthquake and disaster reduction of high earth-rock dam[J]. Water Power, 2009, 35(5): 11-14. (in Chinese))
  • Related Articles

    [1]GUO Wanli, CAI Zhengyin, ZHU Jungao. Three state variables-related constitutive model for coarse-grained soil[J]. Chinese Journal of Geotechnical Engineering, 2025, 47(2): 234-242. DOI: 10.11779/CJGE20230372
    [2]ZHAO Shougang, LI Na, HE Xianfeng. Experimental study on mechanical properties and constitutive relation of CSG materials[J]. Chinese Journal of Geotechnical Engineering, 2023, 45(S1): 230-233, 248. DOI: 10.11779/CJGE2023S10033
    [3]YANG Jun-tang, LIU Yuan-xue, ZHENG Ying-ren, HE Shao-qi. Deep mining of big data and model tests on dilatancy characteristics of dilatant soils[J]. Chinese Journal of Geotechnical Engineering, 2020, 42(3): 513-522. DOI: 10.11779/CJGE202003013
    [4]SHI Yu-cheng, QIU Guo-rong. Constitutive relation of seismic subsidence of loess based on microstructure[J]. Chinese Journal of Geotechnical Engineering, 2011, 33(zk1): 7-11.
    [5]ZHOU Jianting, LIU Yuanxue. Constitutive model for isotropic damage of geomaterial[J]. Chinese Journal of Geotechnical Engineering, 2007, 29(11): 1636-1641.
    [6]YIN Zongze, ZHOU Jian, CHIU C F, YUAN Junping, ZHANG Kunyong. Constitutive relations and deformation calculation for unsaturated soils[J]. Chinese Journal of Geotechnical Engineering, 2006, 28(2): 137-146.
    [7]CHEN Guoxing, ZHUANG Haiyang. Developed nonlinear dynamic constitutive relations of soils based on Davidenkov skeleton curve[J]. Chinese Journal of Geotechnical Engineering, 2005, 27(8): 860-864.
    [8]LIU Yachen, CAI Yongqing, LIU Quansheng, WU Yushan. Thermal-hydraulic-mechanical coupling constitutive relation of rock mass fracture interconnectivity[J]. Chinese Journal of Geotechnical Engineering, 2001, 23(2): 196-200.
    [9]Miao Tiande, Liu Zhongyu, Ren Jiusheng. Deformation mechanism and constitutive relation of collapsible loess[J]. Chinese Journal of Geotechnical Engineering, 1999, 21(4): 383-387.
    [10]Zhong Xiaoxiong, Yuan Jianxin. Microfabrics and Constitutive Relations of Granular Materials[J]. Chinese Journal of Geotechnical Engineering, 1992, 14(S1): 39-48.
  • Cited by

    Periodical cited type(2)

    1. 董伟,郭珉均. 砒砂岩水泥基复合材料研究现状. 内蒙古科技大学学报. 2024(02): 163-166+171 .
    2. 蒋飞,王丽艳,刘涛,余曜宏,王炳辉,农珍珍. 考虑时间效应的钢渣填料动力特性与微观结构研究. 防灾减灾工程学报. 2024(04): 940-951 .

    Other cited types(3)

Catalog

    Article views (435) PDF downloads (294) Cited by(5)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return