• 全国中文核心期刊
  • 中国科技核心期刊
  • 美国工程索引(EI)收录期刊
  • Scopus数据库收录期刊

基于最大熵原理的土工膜与垫层颗粒间接触力随机状态分析

姜晓桢, 束一鸣

姜晓桢, 束一鸣. 基于最大熵原理的土工膜与垫层颗粒间接触力随机状态分析[J]. 岩土工程学报, 2016, 38(zk1): 49-55. DOI: 10.11779/CJGE2016S1009
引用本文: 姜晓桢, 束一鸣. 基于最大熵原理的土工膜与垫层颗粒间接触力随机状态分析[J]. 岩土工程学报, 2016, 38(zk1): 49-55. DOI: 10.11779/CJGE2016S1009
JIANG Xiao-zhen, SHU Yi-ming. Stochastic analysis of contact force between geomembrane and particle underlayer based on principle of maximum entropy[J]. Chinese Journal of Geotechnical Engineering, 2016, 38(zk1): 49-55. DOI: 10.11779/CJGE2016S1009
Citation: JIANG Xiao-zhen, SHU Yi-ming. Stochastic analysis of contact force between geomembrane and particle underlayer based on principle of maximum entropy[J]. Chinese Journal of Geotechnical Engineering, 2016, 38(zk1): 49-55. DOI: 10.11779/CJGE2016S1009

基于最大熵原理的土工膜与垫层颗粒间接触力随机状态分析  English Version

基金项目: 国家自然科学基金项目(51379069); 中央级公益性科研院所基本科研业务费专项资金项目(15Y315014)
详细信息
    作者简介:

    姜晓桢(1985- ),男,博士,主要从事土工合成材料工程应用等方面的工作。E-mail: xzjiang@nhri.cn。

Stochastic analysis of contact force between geomembrane and particle underlayer based on principle of maximum entropy

  • 摘要: 土石坝坝面防渗土工膜与其下的垫层颗粒间接触状态存在较大的随机性和无序性,一直是定量分析土石坝面膜防渗结构可靠性的一个难点。基于最大熵原理对土工膜与垫层颗粒之间接触力随机状态进行了分析演绎,提出了一种研究不同垫层颗粒状态(粒径级配、尖锐程度等)、不同压力条件下土工膜与垫层颗粒间接触力大小分布的数学方法,利用该方法分别从理论上推导出了土工膜与均一圆球颗粒垫层之间接触力大小概率密度分布函数以及土工膜与级配圆球颗粒垫层之间的接触力大小概率密度分布函数,理论推导表明在垫层颗粒随机排布的条件下,土工膜与垫层颗粒间接触力大小分布满足以压力和单位面积接触点数为参数的指数分布规律,最后通过室内试验,利用压敏纸测量了上述两种垫层颗粒与土工膜之间的接触力大小,统计每个接触点上接触力后发现与理论推导的结果基本一致。
    Abstract: In order to quantitatively analyze the reliability of geomembrane surface barrier on rockfill dam, a stochastic method based on the principle of the maximum entropy is employed to analyze the random contact between geomembrane and particle underlayer. The distribution of contact force between geomembrane and particle underlayers with different particle sizes and sharpnesses under different pressures can be obtained theoretically using this method. Two simple cases are also given to show the detailed process of mathematical derivation of this method. The distribution of contact force is exponential according to the proposed method, and the particle size and pressure are the most two important factors to affect the distribution of contact force. The proposed method is then verified by a series of laboratory experiments using the pressure-sensitive film, and it is a reliable tool to measure the contact force at each contact point. The results show that the distribution of contact force from the proposed method is in good agreement with the test data.
  • [1] 束一鸣, 张利新, 袁全义, 等. 西霞院反调节水库土石坝膜防渗工艺[J]. 水利水电科技进展, 2009, 29(6): 70-73. (SHU Yi-ming, ZHANG Li-xin, YUAN Quan-yi, et al. Geomembrane seepage control techniques of Xixiayuan earth-rock dam[J]. Advances in Science and Technology of water resources, 2009, 29(6): 70-73. (in Chinese))
    [2] DANIEL P, LAURENT P, PATRICE M. Feedback and guidelinesfor geomembrane lining systems of mountain reservoirs in France[J]. Geotextiles and Geomembranes, 2011, 29(5): 415-424.
    [3] CAZZUFFI D. The use of geomembranes in Italian dams[J]. International Water Power & Dam Construction, 1987, 39(6): 17-21.
    [4] 李岳军, 周建平, 何世海, 等. 抽水蓄能电站水库土工膜防渗技术的研究和应用[J]. 水力发电, 2006, 32(3): 67-69, 80. (LI Yue-jun, ZHOU Jian-ping, HE Shi-hai, et al. Study on and application of geotech-membrane in the leakage prevention works of reservoirs of the pumped storage power station[J]. Water Power, 2006, 32(3): 67-69, 80. (in Chinese))
    [5] 滕兆明, 束一鸣, 吴海民, 等. 无沙混凝土垫层配合比及力学性能试验研究[J]. 人民黄河, 2012, 34(10): 139-141. (TENG Zhao-ming, SHU Yi-ming, WU Hai-min, et al. Study of test on mixed proportions design and mechanical properties of no fines concrete cushion layer[J]. Yellow River, 2012, 34(10): 139-141. (in Chinese))
    [6] 土工合成材料测试规程[S]. 北京: 中国水利水电出版社, 1999: 29-33. (Code for test and measurement of geosynthetics[S]. Beijing: China Water&Power Press, 1999: 29-33. (in Chinese))
    [7] WANG Deng-ming, ZHOU You-he. Statistics of contract force network in dense granular matter[J]. Particuology, 2010, 8(3): 133-140.
    [8] CHAN S H, NGAN A H W, Statistical distribution of forces in stressed 2-D low-density materials with random microstructures[J]. Mechanics of Materials, 2006, 38(8): 1199-1212.
    [9] ROTHENBURG L, KRUYT N P. Micromechanical definition of an entropy for quasi-static deformation of granular materials [J]. Journal of the Mechanics and Physics of Solids, 2009, 57(12): 634-655.
    [10] NGAN A H W. Mechanical analog of temperature for the description of force distribution in static granular packings[J]. Phys Rev E, 2003, 68(20): 1-10.
    [11] SHANNON C E. A mathematical theory of communication[J]. Bell System Technical, 1948: 379-423.
    [12] BERTSEKAS D P. Nonlinear programming[M]. 2nd ed. Cambridge, MA: Athena Scientific, 1999.
    [13] 刘国祥, 何志芳, 杨纪龙. 概率论与数理统计[M]. 兰州:甘肃教育出版社, 2002. (LIU Guo-xiang, HE Zhi-fang, YANG Ji-long. Probability theory and mathematical statistics[M]. Lanzhou: Gansu Education Press, 2002. (in Chinese))
计量
  • 文章访问数:  279
  • HTML全文浏览量:  2
  • PDF下载量:  216
  • 被引次数: 0
出版历程
  • 收稿日期:  2015-11-29
  • 发布日期:  2016-03-24

目录

    /

    返回文章
    返回