• 全国中文核心期刊
  • 中国科技核心期刊
  • 美国工程索引(EI)收录期刊
  • Scopus数据库收录期刊

微波辅助机械破岩试验和理论研究进展

卢高明, 李元辉, 张希巍

卢高明, 李元辉, 张希巍. 微波辅助机械破岩试验和理论研究进展[J]. 岩土工程学报, 2016, 38(8): 1497-1506. DOI: 10.11779/CJGE201608018
引用本文: 卢高明, 李元辉, 张希巍. 微波辅助机械破岩试验和理论研究进展[J]. 岩土工程学报, 2016, 38(8): 1497-1506. DOI: 10.11779/CJGE201608018
LU Gao-ming, LI Yuan-hui, HASSANI Ferri. Review of theoretical and experimental studies on mechanical rock fragmentation using microwave-assisted approach[J]. Chinese Journal of Geotechnical Engineering, 2016, 38(8): 1497-1506. DOI: 10.11779/CJGE201608018
Citation: LU Gao-ming, LI Yuan-hui, HASSANI Ferri. Review of theoretical and experimental studies on mechanical rock fragmentation using microwave-assisted approach[J]. Chinese Journal of Geotechnical Engineering, 2016, 38(8): 1497-1506. DOI: 10.11779/CJGE201608018

微波辅助机械破岩试验和理论研究进展  English Version

基金项目: 国家自然科学基金项目(51274055); “十二五”国家科技支撑计划项目(2013BAB02B01); 高等学校博士学科点专项科研基金项目(20130042110010); 中央高校基本科研业务专项基金(N150104007)
详细信息
    作者简介:

    卢高明(1987- ),男,博士研究生,主要从事微波辅助破岩和岩石力学等方面的研究。E-mail: gaoming_lu@foxmail.com。

    通讯作者:

    李元辉,E-mail:liyuanhui@mail.neu.edu.cn

Review of theoretical and experimental studies on mechanical rock fragmentation using microwave-assisted approach

  • 摘要: 微波辅助机械破岩是微波加热技术和机械破岩技术相结合的一种混合型破岩方法。岩石内不同矿物成分对微波能具有不同的吸收特性,各矿物不同的热膨胀产生的内应力使岩石内发生沿晶断裂和穿晶断裂,使试样产生损伤和微裂纹,这会引起岩石强度的降低。辐射功率和辐射时间是影响岩石力学特性的重要参数,一定功率的微波辐射处理后,试样的点荷载强度、单轴抗压强度和抗拉强度发生显著降低,微波功率越高,辐射时间越长,对试样强度的折减效果越明显。数值研究结果与试验研究结果基本一致,增加功率的同时降低辐射时间对试样强度折减具有更好的效果。岩石点荷载强度、单轴抗压强度和抗拉强度的降低能够显著提高机械破岩设备刀具的侵入率和刀具寿命,解决机械刀具的磨损问题。微波辅助机械破岩对钻孔、TBM掘进和实现金属矿矿岩连续开采都具有重要影响作用。
    Abstract: The microwave-assisted mechanical rock breaking system is a rock fragmentation method which uses the combination of microwave heating technology and the mechanical excavating technology. Different minerals have different degrees of absorption to microwave energy, so intergranular and transgranular fractures occur within the specimen after microwave radiation treatment, and the specimen is weakened and micro cracks are generated due to the internal stress caused by thermal expansion of different minerals within the rocks. This causes the rock strength to be reduced. Microwave power and exposure time are the important parameters to influence the mechanical properties of rocks. The point load strength, tensile strength and compressive strength decrease significantly with a certain power level of microwave radiation. The higher the microwave power and the longer the exposure time, the more the strength reduction. The numerical results are compared with the experimental ones and show that the strength reduction is much quicker by increasing the power level of microwave in shorter time of exposure. The life and penetration rate of cutters of the rock mechanical equipment can be increased by the strength reduction of rocks, which can contribute to resolving the disc cutter wear problem. Microwave-assisted mechanical rock breaking has significant influence on drilling, TBM tunnelling and realizing the continuous mining of metal mine.
  • [1] 徐小荷. 试论采矿工程的新学科——岩石破碎学[J]. 有色金属(矿山部分), 1980(6): 39-42. (XU Xiao-he. On the new subject of mining engineering-rock fragmentation[J]. Nonferrous Metals (Mining Section), 1980(6): 39-42. (in Chinese))
    [2] 徐小荷, 余 静. 岩石破碎学[M]. 北京: 煤炭工业出版社, 1984. (XU Xiao-he, YU Jing. Rock fragmentation[M]. Beijing: Coal Industry Press, 1984. (in Chinese))
    [3] 周子龙, 李夕兵, 刘希灵. 深部岩石破碎方法[J]. 矿山压力与顶板管理, 2005(3): 63-65. (ZHOU Zi-long, LI Xi-bing, LIU Xi-ling. Rock fragmentation method in deep level[J]. Ground Pressure and Strata Control, 2005(3): 63-65. (in Chinese))
    [4] 李夕兵, 周子龙, 王卫华. 岩石破碎工程发展现状与展望[C]// 2009—2010岩石力学与岩石工程学科发展报告. 北京, 2010: 142-149. (LI Xi-bing, ZHOU Zi-long, WANG Wei-hua. The status and prospect of development in rock fargmentation engineering [C]// Report on the Development of Rock Mechanics and Rock Engineering Discipline in 2009-2010. Beijing, 2010: 142-149. (in Chinese))
    [5] 潘井澜. 爆破破岩机理的探讨[J]. 爆破, 1994(4): 1-6. (PAN Jing-lan. The discussion of rock mechanism by blasting[J]. Blasting, 1994(4): 1-6. (in Chinese))
    [6] 余 静. 岩石机械破碎规律和破岩机理模型[J]. 煤炭学报, 1982, 7(3): 10-18. (YU Jing. Rulesofrockfragmentation withmechanicalmethodsandmodelofrockfailuremechanism[J].Journal of China Coal Society, 1982, 7(3): 10-18. (in Chinese))
    [7] 刘柏禄, 潘建忠, 谢世勇. 岩石破碎方法的研究现状及展望[J]. 中国钨业, 2011, 26(1): 15-19. (LIU Baidu-lu, PAN Jian-zhong, XIE Shi-yong. On the research development of rock fragmentation and its prospect[J]. China Tungsten Industry, 2011, 26(1): 15-19. (in Chinese))
    [8] 戴 俊, 孟 振, 吴丙权.微波照射对岩石强度的影响研究[J]. 有色金属(选矿部分), 2014(3): 54-57. (DAI Jun, MENG Zhen, WU Bing-quan. Study on impact of rock strength by microwave irradiation[J]. Nonferrous Metals (Mining section), 2014(3): 54-57. (in Chinese))
    [9] OSEPCHUK J M. A history of microwave heating Applications[J]. IEEE Trans on Microwave Theory and Techniques, 1984, 32(9): 1200-1224.
    [10] CHEN T T, DUTRIZAC J E, HAQUE K E, et al. Relative transparency of minerals to microwave radiation[J]. Canadian Metallurgical Quarterly, 1984, 23(3): 349-351.
    [11] WALKIEWICZ J W, KAZONICH G, MCGILL S L. Microwave heating characteristics of selected minerals and compounds[J]. Minerals and Metallurgical Processing, 1988, 39(1): 39-42.
    [12] WALKIEWICZ J W, LINDROTH D P, MCGILL S L. Microwave assisted grinding[J]. IEEE Transactions on Industrial Applications, 1991, 27(2): 239-242.
    [13] KINGMAN S W, JACKSON K, BRADSHAW S M, et al. An investigation into the influence of microwave treatment on mineral ore comminution[J]. Powder Technology, 2004, 146(3): 176-184.
    [14] KINGMAN S W, ROWSON N A. Microwave treatment of minerals—a review[J]. Minerals Engineering, 1998, 11(11): 1081-1087.
    [15] KINGMAN S W, VORSTER W, ROWSON N A. The influence of mineralogy on microwave assisted grinding[J]. Minerals Engineering, 2000, 13(3): 313-327.
    [16] KINGMAN S W, JACKSON K, CUMBANE A, et al. Recent developments in microwave-assisted comminution[J]. International Journal of Mineral Processing, 2004, 74(1): 71-83.
    [17] KINGMAN S W, CORFIELF G M, ROWSON N A. Effects of microwave radiation upon the mineralogy and magnetic processing of a massive Norwegian ilmenite ore[J]. Magnetic and Electrical Separation, 1998, 9: 131-148.
    [18] VORSTER W, ROWSON N A, KINGMAN S W. The effect of microwave radiation upon the processing of Neves Corvo copper ore[J]. International Journal of Mineral Processing, 2001, 63(1): 29-44.
    [19] WHITTLES D N, KINGMAN S W, REDDISH D J. Application of numerical modelling for prediction of the influence of power density on microwave-assisted breakage[J]. International Journal of Mineral Processing, 2003, 68(1): 71-91.
    [20] JONES D A, KINGMAN S W, WHITTLES D N, et al. Understanding microwave assisted breakage[J]. Minerals Engineering, 2005, 18(7): 659-669.
    [21] JONES D A, KINGMAN S W, WHITTLES D N, et al. The influence of microwave energy delivery method on strength reduction in ore samples[J]. Chemical Engineering and Processing: Process Intensification, 2007, 46(4): 291-299.
    [22] JOHN R S, BATCHELOR A R, IVANOV D, et al. Understanding microwave induced sorting of porphyry copper ores[J]. Minerals Engineering, 2015, 84: 77-87.
    [23] MONTI T, TSELEV A, UDOUDO O, et al. High-resolution dielectric characterization of minerals: A step towards understanding the basic interactions between microwaves and rocks[J]. International Journal of Mineral Processing, 2016, 151: 8-21.
    [24] HASSANI F, NEKOOVAGHT P M, RADZISZEWSKI P, et al. Microwave assisted mechanical rock breaking[C]// Proceedings of the 12th ISRM International Congress on Rock Mechanics. Beijing, 2011: 2075-2080.
    [25] HASSANI F, NEKOOVAGHT P M. The development of microwave assisted machineries to break hard rocks[C]// Proceedings of the 28th International Symposium on Automation and Robotics in Construction (ISARC). Seoul, 2011: 678-684.
    [26] HASSANI F, OUELLET J, RADZISZEWSKI P, et al. Exploring microwave assisted drilling[C]//Planetary and Terrestrial Mining Sciences Symposium (PTMSS). Montreal, 2007.
    [27] HASSANI F, OUELLET J, RADZISZEWSKI P, et al. Microwave assisted drilling and its influence on rock breakage[C]// International symposium of rock mechanics, Proceedings of 5th Asian Rock Mechanics Symposium, ISRM-Sponsored International Symposium. 2008: 87-104.
    [28] HASSANI F, NEKOOVAGHT P M. The use of microwave to contribute to breakage of rocks[C]//2nd South American Symposium on Rock Excavations. San José, 2012.
    [29] HASSANIF, NEKOOVAGHT P M, GHARIB N. The influence of microwave irradiation on rocks for microwave-assisted underground excavation[J]. Journal of Rock Mechanics and Geotechnical Engineering, 2016, 8(1): 1-15.
    [30] SATISH H, OUELLET J, RAGHAVAN V, et al. Investigating microwave assisted rock breakage for possible space mining applications[J]. Mining Technology, 2006, 115(1): 34-40.
    [31] NEKOOVAGHT P M, GHARIB N, HASSANI F. Numerical simulation and experimental investigation of the influence of 2.45 GHz microwave radiation on hard rock surface[C]//8th Asian Rock Mechanics Symposium. Sapporo, 2014.
    [32] NEKOOVAGHT P M, GHARIB N, HASSANI F. Microwave assistance positive influence on rock breakage in space mining applications[C]//65th International Astronautical Congress, International Astronautical Federation. Toronto, 2014: 1-7.
    [33] NEKOOVAGHT P M, HASSANI F. The influence of microwave radiation on hard rocks as in microwave assisted rock breakage applications[C]// The ISRM European rock mechanics Symposium. Vigo, 2014.
    [34] HARTLIEB P, TOIFL M, KUCHAR F, et al. Thermo-physical properties of selected hard rocks and their relation to microwave-assisted comminution[J]. Minerals Engineering, 2016, 91: 34-41.
    [35] HARTLIEB P. LEINDL M, KUCHAR F, et al. Damage of basalt induced by microwave irradiation[J]. Minerals Engineering, 2012, 31: 82-89.
    [36] PEINSITT T, KUCHAR F, HARTLIEB P, et al. Microwave heating of dry and water saturated basalt, granite and sandstone[J]. International Journal of Mining and Mineral Engineering, 2010, 2(1): 18-29.
    [37] MEISELS R, TOIFL M, HARTLIEB P, et al. Microwave propagation and absorption and its thermo-mechanical consequences in heterogeneous rocks[J]. International Journal of Mineral Processing, 2015, 135: 40-51.
    [38] TOIFL M, MEISELS R, HARTLIEB P, et al. 3D numerical study on microwave induced stresses in inhomogeneous hard rocks[J]. Minerals Engineering, 2016, 90: 29-42. (in press)
    [39] GWAREK W K, CELUCH-MARCYSIAK M. A review of microwave power applications in industry and research[C]// International Conference on Microwaves, Radar and Wireless Communications. Warszawa, 2004: 843-848.
    [40] CLARK D E, SUTTON W H. Microwave processing of materials[J]. Annual Review of Materials Science, 1996, 26(1): 299-331.
    [41] SAXENAA K. Electromagnetic theory and applications[M]. Oxford, UK: Alpha Science International, 2009.
    [42] HARRISON P C. Microwave processing of minerals and ores[D]. Birmingham: University of Birmingham, 1997.
    [43] CLARK S P. Handbook of physical constants[M]. Geological Society of America. Boulder, 1966.
    [44] WILKINSON M A, Tester J W. Experimental measurement of surface temperatures during flame-jet induced thermal spallation[J]. International Journal of Rock Mechanics and Mining Sciences &Geomechanics Abstracts, 1993, 26(1): 29-62.
    [45] LINDROTH D P, BERGLUND W R, Morrell R. J., et al. Microwave-assisted drilling in hard rock [J]. International Journal of Rock Mechanics and Mining Sciences & Geomechanics Abstracts, 1993, 44(8): 1159-1163.
    [46] ENTACHER M, LORENZ S, GALLER R. Tunnel boring machine performance prediction with scaled rock cutting tests[J]. International Journal of Rock Mechanics and Mining Sciences, 2014, 70: 450-459.
    [47] GONG Q M, ZHAO J. Development of a rock mass characteristics model for TBM penetration rate prediction[J]. International Journal of Rock Mechanics and Mining Sciences, 2009, 46(1): 8-18.
    [48] JAIN P, NAITHANIA K, SINGH T N. Performance characteristics of tunnel boring machine in basalt and pyroclastic rocks of Deccan traps-A case study[J]. Journal of Rock Mechanics and Geotechnical Engineering, 2014, 6(1): 36-47.
    [49] WIJK G. A model of tunnel boring machine performance[J]. Geotechnical & Geological Engineering, 1992, 10(1): 19-40.
  • 期刊类型引用(25)

    1. 王朋飞,祝壮,孙中光,曲越,张衡,李培现. 长壁工作面开采时间间隔对倾向主断面地表沉陷的影响研究. 采矿与安全工程学报. 2025(02): 282-293 . 百度学术
    2. 丁星丞,李培现,康新亮,王明亮,张涛,郝登程. 融合概率积分法与SBAS-InSAR的开采沉陷计算方法. 矿业科学学报. 2025(01): 48-56 . 百度学术
    3. 韩春鹏,杜超,史梁,祖发金,柴晓鹤. 老采空区地表沉降预测合理监测模式分析. 工程勘察. 2024(02): 48-53 . 百度学术
    4. 张梦华. 羊东矿保护煤柱开采地表变形研究. 煤炭与化工. 2024(03): 27-29+33 . 百度学术
    5. 郭庆彪,余庆,郑美楠,罗锦. 测线布设形态与测点缺失对采煤沉陷预计参数反演的影响. 煤田地质与勘探. 2024(06): 57-68 . 百度学术
    6. 孙述海,王文斌,齐树明,姜佃卿,孙玥,岳伟佳. 新阳煤矿三、四采区地表移动变形规律研究. 资源信息与工程. 2024(04): 59-63 . 百度学术
    7. 张玮,陈迪,袁利伟,郭庆,李晨洋,李彧,李袁松,李春辉,陈明辉. 基于概率积分法的露地联采地表移动影响范围划定分析. 采矿技术. 2024(05): 12-20 . 百度学术
    8. 孙志豪,徐良骥,刘潇鹏. 一种基于分段加权赋参的厚松散层矿区沉陷预计方法. 金属矿山. 2024(11): 132-141 . 百度学术
    9. 王文才,吴周康,高小雷,王鹏. 非充分采动条件下地表移动概率积分法预测. 煤炭技术. 2023(06): 1-4 . 百度学术
    10. 杨晓玉,朱晓峻. 基于稳健遗传算法的矿山开采沉陷预计参数反演. 金属矿山. 2023(08): 237-244 . 百度学术
    11. 滕永佳,阎跃观,郭伟,姜岩,胡耀东. 不规则工作面开采地表沉陷线积分预计方法. 矿业科学学报. 2022(01): 82-88 . 百度学术
    12. 胡辉东,李贤庆,陈纯芳,刘洋,张博翔. 鄂尔多斯盆地杭锦旗地区J58井区盒一段甜点储层特征及主控因素. 矿业科学学报. 2022(01): 71-88 . 百度学术
    13. 程桦,张亮亮,姚直书,彭世龙,郭龙辉. 厚松散层薄基岩非对称开采井筒偏斜机理. 煤炭学报. 2022(01): 102-114 . 百度学术
    14. 张劲满,阎跃观,李杰卫,徐瑞瑞,王芷馨,张坤,岳彩亚. 概率积分预计参数的ENN优化算法. 金属矿山. 2022(05): 170-176 . 百度学术
    15. 周佳薇,吴鑫,刘峰. 煤矿综放开采地表移动规律. 测绘技术装备. 2022(02): 130-134 . 百度学术
    16. 黄金中,王磊,李靖宇,蒋创,滕超群,李忠,李世保. 群智能优化算法反演概率积分参数的性能比较与分析. 金属矿山. 2022(08): 173-181 . 百度学术
    17. 丁一,邓念东,姚婷,刘东海,尚慧. 地质采矿条件对铁路路基沉陷预测影响研究. 煤炭科学技术. 2022(07): 135-145 . 百度学术
    18. 李勇,贺鑫,李培现,王炳,杨中辉,张芷祺,杨可明. 煤矿地表塌陷区天眼巡查监测系统设计及应用. 煤炭工程. 2022(12): 157-163 . 百度学术
    19. 叶伟,徐良骥,张坤. 概率积分法参数反演的SAAFC模型. 金属矿山. 2021(04): 139-148 . 百度学术
    20. 李靖宇,王磊,朱尚军,滕超群,江克贵. 基于狼群算法的概率积分法模型参数反演方法研究. 中国矿业. 2020(10): 102-109 . 百度学术
    21. 陈兴达,余学祥,池深深,汪涛,陈卫卫. 基于多种群遗传算法的概率积分法参数反演. 煤矿安全. 2020(11): 50-54+60 . 百度学术
    22. 曲相屹,李学良. 长壁开采工作面地表岩移参数求取方法分析. 水力采煤与管道运输. 2019(02): 39-41 . 百度学术
    23. 李学良. 建筑物开采损害鉴定方法评价及应用. 矿山测量. 2019(04): 9-12 . 百度学术
    24. 袁鑫,王远坚,郑健,李鹏宇,胡重戎,姜岩. 基于弹性薄板理论的地表下沉预计模型. 金属矿山. 2019(10): 37-41 . 百度学术
    25. 黄晖,池深深,韩必武,刘可胜. 基于PCA-BP神经网络的概率积分法参数算法研究. 黑龙江科学. 2019(24): 1-5 . 百度学术

    其他类型引用(16)

计量
  • 文章访问数:  680
  • HTML全文浏览量:  6
  • PDF下载量:  755
  • 被引次数: 41
出版历程
  • 收稿日期:  2016-01-24
  • 发布日期:  2016-08-24

目录

    /

    返回文章
    返回