• 全国中文核心期刊
  • 中国科技核心期刊
  • 美国工程索引(EI)收录期刊
  • Scopus数据库收录期刊

考虑概率分布影响的低概率水平边坡可靠度分析

蒋水华, 魏博文, 姚池, 杨建华

蒋水华, 魏博文, 姚池, 杨建华. 考虑概率分布影响的低概率水平边坡可靠度分析[J]. 岩土工程学报, 2016, 38(6): 1071-1080. DOI: 10.11779/CJGE201606014
引用本文: 蒋水华, 魏博文, 姚池, 杨建华. 考虑概率分布影响的低概率水平边坡可靠度分析[J]. 岩土工程学报, 2016, 38(6): 1071-1080. DOI: 10.11779/CJGE201606014
JIANG Shui-hua, WEI Bo-wen, YAO Chi, YANG Jian-hua. Reliability analysis of soil slopes at low-probability levels considering effect of probability distributions[J]. Chinese Journal of Geotechnical Engineering, 2016, 38(6): 1071-1080. DOI: 10.11779/CJGE201606014
Citation: JIANG Shui-hua, WEI Bo-wen, YAO Chi, YANG Jian-hua. Reliability analysis of soil slopes at low-probability levels considering effect of probability distributions[J]. Chinese Journal of Geotechnical Engineering, 2016, 38(6): 1071-1080. DOI: 10.11779/CJGE201606014

考虑概率分布影响的低概率水平边坡可靠度分析  English Version

基金项目: 长江科学院开放研究基金项目(CKWV2015222/KY); 国家自然科学基金项目(51509125,51409139)
详细信息
    作者简介:

    蒋水华(1987- ),男,江西九江人,博士,讲师,主要从事岩土工程可靠度和风险控制方面的研究。E-mail: sjiangaa@ncu.edu.cn。

Reliability analysis of soil slopes at low-probability levels considering effect of probability distributions

  • 摘要: 目前考虑土体参数空间变异性的边坡可靠度分析所研究的边坡几何尺寸相对较小。为有效地分析考虑参数空间变异性的几何尺寸相对较大的边坡可靠度问题,提出了基于多重响应面与子集模拟的边坡可靠度分析方法。以一个坡高为24 m的两层非均质黏土边坡为例验证了提出方法的有效性,并探讨了正态、对数正态、极值I型、Gamma和Beta这5种概率分布类型对边坡可靠度的影响。结果表明,提出方法具有以下优势:①可以有效地计算考虑多参数空间变异性的低概率水平边坡可靠度;②可以较好地解决几何尺寸相对较大的边坡可靠度问题;③有较高的参数敏感性分析计算效率,可为调查概率分布类型和波动范围等参数统计特征对边坡可靠度的影响提供技术支持。此外,参数概率分布类型对边坡可靠度具有重要的影响,常用的正态和对数正态分布分别用于表征参数概率分布特征时,可能会分别高估和低估边坡失效概率。
    Abstract: The existing geometries of the slopes in slope reliability analysis considering spatial variability of soil properties are relatively small. An efficient approach based on the multiple response-surface and subset simulation is proposed for solving slope reliability problems involving relatively large slope geometries. An example of reliability analysis of two-layered heterogeneous clay slope with the height of 24 m is presented to demonstrate the effectiveness of the proposed method. The effect of marginal probability distributions, namely Gaussian, lognormal, Extvalue I, Gamma and Beta on slope reliability is investigated. The results indicate that the proposed approach possesses the following advantages: (1) it can properly evaluate the slope reliability at low-probability levels (i.e., 10-9 ~ 10-4) in spatially variable soils; (2) it effectively solves slope reliability problems involving relatively large slope geometries; (3) it greatly improves the computational efficiency in parametric sensitivity analysis, and provides an effective way to investigate the effects of statistics (e.g., probability distribution, scale of fluctuation) on the slope reliability. Additionally, the marginal probability distributions of soil properties significantly affect the slope reliability. The commonly-used Gaussian and lognormal distributions may overestimate and underestimate the probability of slope failure, respectively.
  • [1] ASAOKA A, GRIVAS D A. Spatial variability of the undrained strength of clays[J]. Journal of Geotechnical Engineering Division, 1982, 108(5): 743-756.
    [2] PHOON K K, KULHAWY F H. Characterization of geotechnical variability[J]. Canadian Geotechnical Journal, 1999, 36(4): 612-624.
    [3] 张继周, 缪林昌, 王华敬. 土性参数不确定性描述方法的探讨[J]. 岩土工程学报, 2009, 31(12): 1936-1940. (ZHANG Ji-zhou, MIAO Lin-chang, WANG Hua-jing. Methods for characterizing variability of soil parameters[J]. Chinese Journal of Geotechnical Engineering, 2009, 31(12): 1936-1940. (in Chinese))
    [4] VANMARCKE E H. Random fields: analysis and synthesis[M]. Beijing: World Scientific Publishing, 2010.
    [5] LI K S, LUMB P. Probabilistic design of slopes[J].Canadian Geotechnical Journal, 1987, 24(4): 520-535.
    [6] SUCHOMEL R, MAŠÍN D. Comparison of different probabilistic methods for predicting stability of a slope in spatially variable c - φ soil[J]. Computers and Geotechnics, 2010, 37(1-2), 132-140.
    [7] JI J, LIAN H J. LOW B K. Modeling 2-D spatial variation in slope reliability analysis using interpolated autocorrelations[J]. Computers and Geotechnics, 2012, 40: 135-146.
    [8] HICKS M A, SAMY K. Influence of heterogeneity on undrained clay slope stability[J]. Quarterly Journal of Engineering Geology and Hydrogeology, 2002, 35(1): 41-49.
    [9] GRIFFITHS D V, FENTON G A. Probabilistic slope stability analysis by finite elements[J]. Journal of Geotechnical and Geoenvironmental Engineering, 2004, 130(5): 507-518.
    [10] CHO S E. Effects of spatial variability of soil properties on slope stability[J]. Engineering Geology, 2007, 92(3/4): 97-109.
    [11] CHO S E. Probabilistic assessment of slope stability that considers the spatial variability of soil properties[J]. Journal of Geotechnical and Geoenvironmental Engineering, 2010, 136(7): 975-984.
    [12] HUANG J S, GRIFFITHS D V, FENTON G A. System reliability of slopes by RFEM[J]. Soils and Foundations, 2010, 50(3): 345-355.
    [13] SALGADO R, KIM D. Reliability analysis of load and resistance factor design of slopes[J]. Journal of Geotechnical and Geoenvironmental Engineering, 2014, 140(1): 57-73.
    [14] WANG Y, CAO Z, AU S K. Practical reliability analysis of slope stability by advanced Monte Carlo simulations in a spreadsheet[J]. Canadian Geotechnical Journal, 2011, 48(1): 162-172.
    [15] LI L, CHU X S. Multiple response surfaces for slope reliability analysis[J]. International Journal for Numerical and Analytical Methods in Geomechanics, 2015, 39(2): 175-192.
    [16] JIANG S H, LI D Q, CAO Z J, et al. Efficient system reliability analysis of slope stability in spatially variable soils using Monte Carlo simulation[J]. Journal of Geotechnical and Geoenvironmental Engineering, 2015, 141(2): 04014096.
    [17] LI D Q, JIANG S H, CAO Z J, et al. A multiple response-surface method for slope reliability analysis considering spatial variability of soil properties[J]. Engineering Geology, 2015, 187: 60-72.
    [18] LUMB P. Safety factors and the probability distribution of soil strength[J]. Canadian Geotechnical Journal, 1970, 7(3): 225-242.
    [19] POPESCU R, DEODATIS G, NOBAHAR A. Effects of random heterogeneity of soil properties on bearing capacity[J]. Probabilistic Engineering Mechanics, 2005, 20(4): 324-341.
    [20] ZHOU W, HONG H P, SHANG J Q. Probabilistic design method of prefabricated vertical drains for soil improvement[J]. Journal of Geotechnical and Geoenvironmental Engineering, 1999, 125(8): 659-664.
    [21] JIMENEZ R, SITAR N. The importance of distribution types on finite element analyses of foundation settlement[J]. Computers and Geotechnics, 2009, 36(3): 474-483.
    [22] 张继周, 缪林昌. 岩土参数概率分布类型及其选择标准[J]. 岩石力学与工程学报, 2009, 28(增刊2): 3526-3532. (ZHANG Ji-zhou, MIU Lin-chang. Types and selection criteria of probability distribution of rock and soil parameters[J]. Chinese Journal of Rock Mechanics and Engineering, 2009, 28(S2): 3526-3532. (in Chinese))
    [23] JIANG T, LIU J, YUAN B, et al. Influence of probability distribution of shear strength parameters on reliability-based rock slope analysis[C]// Slope Stability and Earth Retaining Walls. Changsha, 2011.
    [24] ZHANG J, ZHANG L M, TANG W H. New methods for system reliability analysis of soil slopes[J]. Canadian Geotechnical Journal, 2011, 48(7): 1138-1148.
    [25] JI J, LOW B K. Stratified response surfaces for system probabilistic evaluation of slopes[J]. Journal of Geotechnical and Geoenvironmental Engineering, 2012, 138(11): 1398-1406.
    [26] LI C C, DER KIUREGHIAN A. Optimal discretization of random fields[J]. Journal of Engineering Mechanics, 1993, 119(6): 1136-1154.
    [27] PHOON K K, HUANG S P, QUEK S T. Implementation of Karhunen-Loeve expansion for simulation using a wavelet-Galerkin scheme[J]. Probabilistic Engineering Mechanics, 2002, 17(3): 293-303.
    [28] ZHU H, ZHANG L M. Characterizing geotechnical anisotropic spatial variations using random field theory[J]. Canadian Geotechnical Journal, 2013, 50(7): 723-734.
    [29] UZIELLI M, VANNUCCHI G, PHOON K K. Random field characterisation of stress-nomalised cone penetration testing parameters[J]. Géotechnique, 2005, 55(1): 3-20.
    [30] 李小勇, 谢康和. 土性参数相关距离的计算研究和统计分析[J]. 岩土力学, 2000, 21(4): 350-353. (LI Xiao-yong, XIE Kang-he. Numerical studies and statistic analyses on correlation distances of soil character parameters[J]. Rock and Soil Mechanics, 2000, 21(4): 350-353. (in Chinese))
    [31] EL-RAMLY H, MORGENSTERN N R, CRUDEN D M. Probabilistic stability analysis of a tailings dyke on presheared clay-shale[J]. Canadian Geotechnical Journal, 2003, 40(1): 192-208.
    [32] 李典庆, 周创兵, 陈益峰, 等. 边坡可靠度分析的随机响应面法及程序实现[J]. 岩石力学与工程学报, 2010, 29(8): 1513-1523. (LI Dian-qing, ZHOU Chuang-bing, CHEN Yi-feng, et al. Reliability analysis of slope using stochastic response surface method and code implementation[J]. Chinese Journal of Rock Mechanics and Engineering, 2010, 29(8): 1513-1523. (in Chinese))
    [33] AU S K, BECK J L. Estimation of small failure probabilities in high dimensions by subset simulation[J]. Probabilistic Engineering Mechanics, 2001, 16(4): 263-277.
    [34] CHING J, PHOON K K, HU Y G. Efficient evaluation of reliability for slopes with circular slip surfaces using importance sampling[J]. Journal of Geotechnical and Geoenvironmental Engineering, 2009, 135(6): 768-777.
    [35] LOW B K, ZHANG J, TANG W H. Efficient system reliability analysis illustrated for a retaining wall and a soil slope[J]. Computers and Geotechnics, 2011, 38(2): 196-204.
    [36] ZHANG J, HUANG H W, PHOON K K. Application of the kriging-based response surface method to the system reliability of soil slopes[J]. Journal of Geotechnical and Geoenvironmental Engineering, 2013, 139(4): 651-655.
    [37] CHO S E. First-order reliability analysis of slope considering multiple failure modes[J]. Engineering Geology, 2013, 154: 98-105.
    [38] 蒋水华, 祁小辉, 曹子君, 等. 基于随机响应面法的边坡系统可靠度分析[J]. 岩土力学, 2015, 36(3): 809-818. (JIANG Shui-hua, QI Xiao-hui, CAO Zi-jun, et al. System reliability analysis of slope using stochastic response surface method[J]. Rock and Soil Mechanics, 2015, 36(3): 809-818. (in Chinese))
    [39] CHING J, PHOON K K. Effect of element sizes in random field finite element simulations of soil shear strength[J]. Computers and Structures, 2013, 126: 120-134.
计量
  • 文章访问数:  532
  • HTML全文浏览量:  4
  • PDF下载量:  452
  • 被引次数: 0
出版历程
  • 收稿日期:  2015-12-21
  • 发布日期:  2016-06-24

目录

    /

    返回文章
    返回