• 全国中文核心期刊
  • 中国科技核心期刊
  • 美国工程索引(EI)收录期刊
  • Scopus数据库收录期刊
JIANG Shui-hua, WEI Bo-wen, YAO Chi, YANG Jian-hua. Reliability analysis of soil slopes at low-probability levels considering effect of probability distributions[J]. Chinese Journal of Geotechnical Engineering, 2016, 38(6): 1071-1080. DOI: 10.11779/CJGE201606014
Citation: JIANG Shui-hua, WEI Bo-wen, YAO Chi, YANG Jian-hua. Reliability analysis of soil slopes at low-probability levels considering effect of probability distributions[J]. Chinese Journal of Geotechnical Engineering, 2016, 38(6): 1071-1080. DOI: 10.11779/CJGE201606014

Reliability analysis of soil slopes at low-probability levels considering effect of probability distributions

More Information
  • Received Date: December 21, 2015
  • Published Date: June 24, 2016
  • The existing geometries of the slopes in slope reliability analysis considering spatial variability of soil properties are relatively small. An efficient approach based on the multiple response-surface and subset simulation is proposed for solving slope reliability problems involving relatively large slope geometries. An example of reliability analysis of two-layered heterogeneous clay slope with the height of 24 m is presented to demonstrate the effectiveness of the proposed method. The effect of marginal probability distributions, namely Gaussian, lognormal, Extvalue I, Gamma and Beta on slope reliability is investigated. The results indicate that the proposed approach possesses the following advantages: (1) it can properly evaluate the slope reliability at low-probability levels (i.e., 10-9 ~ 10-4) in spatially variable soils; (2) it effectively solves slope reliability problems involving relatively large slope geometries; (3) it greatly improves the computational efficiency in parametric sensitivity analysis, and provides an effective way to investigate the effects of statistics (e.g., probability distribution, scale of fluctuation) on the slope reliability. Additionally, the marginal probability distributions of soil properties significantly affect the slope reliability. The commonly-used Gaussian and lognormal distributions may overestimate and underestimate the probability of slope failure, respectively.
  • [1]
    ASAOKA A, GRIVAS D A. Spatial variability of the undrained strength of clays[J]. Journal of Geotechnical Engineering Division, 1982, 108(5): 743-756.
    [2]
    PHOON K K, KULHAWY F H. Characterization of geotechnical variability[J]. Canadian Geotechnical Journal, 1999, 36(4): 612-624.
    [3]
    张继周, 缪林昌, 王华敬. 土性参数不确定性描述方法的探讨[J]. 岩土工程学报, 2009, 31(12): 1936-1940. (ZHANG Ji-zhou, MIAO Lin-chang, WANG Hua-jing. Methods for characterizing variability of soil parameters[J]. Chinese Journal of Geotechnical Engineering, 2009, 31(12): 1936-1940. (in Chinese))
    [4]
    VANMARCKE E H. Random fields: analysis and synthesis[M]. Beijing: World Scientific Publishing, 2010.
    [5]
    LI K S, LUMB P. Probabilistic design of slopes[J].Canadian Geotechnical Journal, 1987, 24(4): 520-535.
    [6]
    SUCHOMEL R, MAŠÍN D. Comparison of different probabilistic methods for predicting stability of a slope in spatially variable c - φ soil[J]. Computers and Geotechnics, 2010, 37(1-2), 132-140.
    [7]
    JI J, LIAN H J. LOW B K. Modeling 2-D spatial variation in slope reliability analysis using interpolated autocorrelations[J]. Computers and Geotechnics, 2012, 40: 135-146.
    [8]
    HICKS M A, SAMY K. Influence of heterogeneity on undrained clay slope stability[J]. Quarterly Journal of Engineering Geology and Hydrogeology, 2002, 35(1): 41-49.
    [9]
    GRIFFITHS D V, FENTON G A. Probabilistic slope stability analysis by finite elements[J]. Journal of Geotechnical and Geoenvironmental Engineering, 2004, 130(5): 507-518.
    [10]
    CHO S E. Effects of spatial variability of soil properties on slope stability[J]. Engineering Geology, 2007, 92(3/4): 97-109.
    [11]
    CHO S E. Probabilistic assessment of slope stability that considers the spatial variability of soil properties[J]. Journal of Geotechnical and Geoenvironmental Engineering, 2010, 136(7): 975-984.
    [12]
    HUANG J S, GRIFFITHS D V, FENTON G A. System reliability of slopes by RFEM[J]. Soils and Foundations, 2010, 50(3): 345-355.
    [13]
    SALGADO R, KIM D. Reliability analysis of load and resistance factor design of slopes[J]. Journal of Geotechnical and Geoenvironmental Engineering, 2014, 140(1): 57-73.
    [14]
    WANG Y, CAO Z, AU S K. Practical reliability analysis of slope stability by advanced Monte Carlo simulations in a spreadsheet[J]. Canadian Geotechnical Journal, 2011, 48(1): 162-172.
    [15]
    LI L, CHU X S. Multiple response surfaces for slope reliability analysis[J]. International Journal for Numerical and Analytical Methods in Geomechanics, 2015, 39(2): 175-192.
    [16]
    JIANG S H, LI D Q, CAO Z J, et al. Efficient system reliability analysis of slope stability in spatially variable soils using Monte Carlo simulation[J]. Journal of Geotechnical and Geoenvironmental Engineering, 2015, 141(2): 04014096.
    [17]
    LI D Q, JIANG S H, CAO Z J, et al. A multiple response-surface method for slope reliability analysis considering spatial variability of soil properties[J]. Engineering Geology, 2015, 187: 60-72.
    [18]
    LUMB P. Safety factors and the probability distribution of soil strength[J]. Canadian Geotechnical Journal, 1970, 7(3): 225-242.
    [19]
    POPESCU R, DEODATIS G, NOBAHAR A. Effects of random heterogeneity of soil properties on bearing capacity[J]. Probabilistic Engineering Mechanics, 2005, 20(4): 324-341.
    [20]
    ZHOU W, HONG H P, SHANG J Q. Probabilistic design method of prefabricated vertical drains for soil improvement[J]. Journal of Geotechnical and Geoenvironmental Engineering, 1999, 125(8): 659-664.
    [21]
    JIMENEZ R, SITAR N. The importance of distribution types on finite element analyses of foundation settlement[J]. Computers and Geotechnics, 2009, 36(3): 474-483.
    [22]
    张继周, 缪林昌. 岩土参数概率分布类型及其选择标准[J]. 岩石力学与工程学报, 2009, 28(增刊2): 3526-3532. (ZHANG Ji-zhou, MIU Lin-chang. Types and selection criteria of probability distribution of rock and soil parameters[J]. Chinese Journal of Rock Mechanics and Engineering, 2009, 28(S2): 3526-3532. (in Chinese))
    [23]
    JIANG T, LIU J, YUAN B, et al. Influence of probability distribution of shear strength parameters on reliability-based rock slope analysis[C]// Slope Stability and Earth Retaining Walls. Changsha, 2011.
    [24]
    ZHANG J, ZHANG L M, TANG W H. New methods for system reliability analysis of soil slopes[J]. Canadian Geotechnical Journal, 2011, 48(7): 1138-1148.
    [25]
    JI J, LOW B K. Stratified response surfaces for system probabilistic evaluation of slopes[J]. Journal of Geotechnical and Geoenvironmental Engineering, 2012, 138(11): 1398-1406.
    [26]
    LI C C, DER KIUREGHIAN A. Optimal discretization of random fields[J]. Journal of Engineering Mechanics, 1993, 119(6): 1136-1154.
    [27]
    PHOON K K, HUANG S P, QUEK S T. Implementation of Karhunen-Loeve expansion for simulation using a wavelet-Galerkin scheme[J]. Probabilistic Engineering Mechanics, 2002, 17(3): 293-303.
    [28]
    ZHU H, ZHANG L M. Characterizing geotechnical anisotropic spatial variations using random field theory[J]. Canadian Geotechnical Journal, 2013, 50(7): 723-734.
    [29]
    UZIELLI M, VANNUCCHI G, PHOON K K. Random field characterisation of stress-nomalised cone penetration testing parameters[J]. Géotechnique, 2005, 55(1): 3-20.
    [30]
    李小勇, 谢康和. 土性参数相关距离的计算研究和统计分析[J]. 岩土力学, 2000, 21(4): 350-353. (LI Xiao-yong, XIE Kang-he. Numerical studies and statistic analyses on correlation distances of soil character parameters[J]. Rock and Soil Mechanics, 2000, 21(4): 350-353. (in Chinese))
    [31]
    EL-RAMLY H, MORGENSTERN N R, CRUDEN D M. Probabilistic stability analysis of a tailings dyke on presheared clay-shale[J]. Canadian Geotechnical Journal, 2003, 40(1): 192-208.
    [32]
    李典庆, 周创兵, 陈益峰, 等. 边坡可靠度分析的随机响应面法及程序实现[J]. 岩石力学与工程学报, 2010, 29(8): 1513-1523. (LI Dian-qing, ZHOU Chuang-bing, CHEN Yi-feng, et al. Reliability analysis of slope using stochastic response surface method and code implementation[J]. Chinese Journal of Rock Mechanics and Engineering, 2010, 29(8): 1513-1523. (in Chinese))
    [33]
    AU S K, BECK J L. Estimation of small failure probabilities in high dimensions by subset simulation[J]. Probabilistic Engineering Mechanics, 2001, 16(4): 263-277.
    [34]
    CHING J, PHOON K K, HU Y G. Efficient evaluation of reliability for slopes with circular slip surfaces using importance sampling[J]. Journal of Geotechnical and Geoenvironmental Engineering, 2009, 135(6): 768-777.
    [35]
    LOW B K, ZHANG J, TANG W H. Efficient system reliability analysis illustrated for a retaining wall and a soil slope[J]. Computers and Geotechnics, 2011, 38(2): 196-204.
    [36]
    ZHANG J, HUANG H W, PHOON K K. Application of the kriging-based response surface method to the system reliability of soil slopes[J]. Journal of Geotechnical and Geoenvironmental Engineering, 2013, 139(4): 651-655.
    [37]
    CHO S E. First-order reliability analysis of slope considering multiple failure modes[J]. Engineering Geology, 2013, 154: 98-105.
    [38]
    蒋水华, 祁小辉, 曹子君, 等. 基于随机响应面法的边坡系统可靠度分析[J]. 岩土力学, 2015, 36(3): 809-818. (JIANG Shui-hua, QI Xiao-hui, CAO Zi-jun, et al. System reliability analysis of slope using stochastic response surface method[J]. Rock and Soil Mechanics, 2015, 36(3): 809-818. (in Chinese))
    [39]
    CHING J, PHOON K K. Effect of element sizes in random field finite element simulations of soil shear strength[J]. Computers and Structures, 2013, 126: 120-134.
  • Cited by

    Periodical cited type(10)

    1. 张岩,陈国兴,赵凯,方怡,彭艳菊. 考虑地层变异和趋势非线性的海床波速结构非平稳随机场模拟方法. 地球科学. 2024(11): 4225-4237 .
    2. 曾正强,蔡永昌,吴江斌. 基于局部耦合马尔科夫链模型的钻孔优化方法. 岩土工程学报. 2024(12): 2620-2628 . 本站查看
    3. 樊一凡,陈之毅. 基于优化选点的土层剪切波速随机性对地铁车站结构抗震性能的影响研究. 土木工程学报. 2023(08): 174-183 .
    4. 朱峻生,王胜,柏君,徐正宣,陈明浩,李昭淇,刘鑫,张自豪,刘兴倚. 基于改进KNN算法的有限钻孔预测全域地质特征的方法. 隧道建设(中英文). 2023(S2): 348-358 .
    5. 潘敏,邓志平,蒋水华. 基于边界模型和广义耦合马尔可夫链模型的地层变异性模拟方法. 地质科技通报. 2022(02): 176-186 .
    6. 邓辉,马雷,高迪,赵卫东,杨曼. 基于转移概率地质统计的淮南顾桥矿区松散层含水介质刻画. 现代地质. 2022(02): 602-609 .
    7. 缑变彩,夏阳,高名岳,王朋艳,王帆. 基于盾构数据驱动的地质条件动态预测. 土木工程与管理学报. 2022(03): 116-120 .
    8. 程利力,陈健,陈睿,魏林春. 基于二维马尔可夫链的武汉长江公铁隧道地层识别. 土木工程与管理学报. 2021(01): 169-174+182 .
    9. 张东明,代鉷锋,王慧,黄宏伟,胡群芳. 考虑地层变异的浅基础承载力分析. 地下空间与工程学报. 2020(05): 1412-1419 .
    10. 邓志平,牛景太,潘敏,彭友文,崔猛. 考虑地层变异性和土体参数空间变异性的边坡可靠度全概率设计方法. 岩土工程学报. 2019(06): 1083-1090 . 本站查看

    Other cited types(5)

Catalog

    Article views (532) PDF downloads (452) Cited by(15)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return