• 全国中文核心期刊
  • 中国科技核心期刊
  • 美国工程索引(EI)收录期刊
  • Scopus数据库收录期刊

活性MgO碳化固化土的干湿循环特性试验研究

郑旭, 刘松玉, 蔡光华, 曹菁菁

郑旭, 刘松玉, 蔡光华, 曹菁菁. 活性MgO碳化固化土的干湿循环特性试验研究[J]. 岩土工程学报, 2016, 38(2): 297-304. DOI: 10.11779/CJGE201602013
引用本文: 郑旭, 刘松玉, 蔡光华, 曹菁菁. 活性MgO碳化固化土的干湿循环特性试验研究[J]. 岩土工程学报, 2016, 38(2): 297-304. DOI: 10.11779/CJGE201602013
ZHENG Xu, LIU Song-yu, CAI Guang-hua, CAO Jing-jing. Experimental study on drying-wetting properties of carbonated reactive MgO-stabilized soils[J]. Chinese Journal of Geotechnical Engineering, 2016, 38(2): 297-304. DOI: 10.11779/CJGE201602013
Citation: ZHENG Xu, LIU Song-yu, CAI Guang-hua, CAO Jing-jing. Experimental study on drying-wetting properties of carbonated reactive MgO-stabilized soils[J]. Chinese Journal of Geotechnical Engineering, 2016, 38(2): 297-304. DOI: 10.11779/CJGE201602013

活性MgO碳化固化土的干湿循环特性试验研究  English Version

基金项目: 国家自然科学基金项目(51279032); 国家科技支撑项目(2012BAJ01B02-01); 中央高校基本科研业务费专项资金项目; 江苏省普通高校研究生科研创新计划资助项目(KYLX_0147)
详细信息
    作者简介:

    郑 旭(1989- ),男,硕士研究生,主要从事特殊地基处理方面的研究。E-mail: zx1989@seu.edu.cn。

Experimental study on drying-wetting properties of carbonated reactive MgO-stabilized soils

  • 摘要: 碳化固化技术是一种利用二氧化碳对搅拌有活性氧化镁的土体进行碳化,以达到快速提高强度的低碳搅拌处理软土的创新技术。通过室内试验研究干湿循环对碳化固化土物理力学特性的影响,并与相同掺量下水泥固化土进行对比。结果表明:活性MgO固化粉土碳化3 h试样的无侧限抗压强度可达5 MPa,粉质黏土碳化24 h试样可达2.6 MPa;干湿循环后碳化固化土的干密度降低,而水泥土干密度基本不变;6次干湿循环后粉土碳化试样的无侧限抗压强度仍然能达到4 MPa以上,为水泥固化粉土强度的2倍,具有较好的抗干湿循环性能;经过6次干湿循环后,粉质黏土碳化试样的残余强度仅为35%,而水泥固化粉质黏土降到65%,表明固化粉质黏土的抗干湿循环性能均较差,且粉质黏土碳化试样的抗干湿循环能力不及水泥固化粉质黏土试样。通过X射线衍射(XRD)、电镜扫描(SEM)及压汞试验(MIP)测试表明干湿循环对粉土碳化试样的累计孔隙影响不大,因此粉土试样仍然具有比较大的密实度来保证试样强度;粉质黏土碳化试样因孔隙增加明显而变得疏松,因此强度显著降低。
    Abstract: The carbonated curing technology is an innovative ground improvement method, in which the reactive magnesia (MgO) is firstly mixed with the soft soils and then carbon dioxide is injected for carbonation in short time. Laboratory tests are performed to investigate the physical and mechanical properties of carbonated reactive MgO-stabilized soils under drying-wetting cycles. The test results are compared with those of cemented soils. It is shown that the maximum unconfined compressive strength of MgO-stabilized silts can reach 5 MPa after 3 hours carbonation, and that of MgO-stabilized silty clay can only reach 2.6 MPa after 24 hours carbonation. The dry density of carbonated MgO-stabilized soils decreases after drying-wetting cycles, while that of cemented soils has significant variation. Silt samples have better performance after drying-wetting cycles, and the maximum unconfined compressive strength of carbonated silt samples is still able to reach 4 MPa after 6 drying-wetting cycles which is twice that of cemented silts. However, the residual compressive strength of the carbonated silty clay is only 35% after 6 cycles, and it is consistently about 65% for the cemented silty clay, therefore the resistance to drying-wetting cyclic performance is worse than that of silt samples, and the resistance to drying-wetting cyclic performance of carbonated silty clay is worse than cemented silty clay. XRD, SEM and MIP tests reveal that the cumulative volume of pore void of carbonated silt is essentially constant. Thus the carbonated silt samples can still show relatively high strength in the unconfined compressive tests. Whereas, the void ratio of carbonated silty clay increases after cyclic drying-wetting tests and further reduces the density, which is responsible for the significant strength reduction.
  • [1] 刘松玉, 钱国超, 章定文. 粉喷桩复合地基理论与工程应用[M]. 北京: 中国建筑工业出版社, 2006: 18-21. (LIU Song-yu, QIAN Guo-chao, ZHANG Ding-wen. The principle and application of dry jet mixing composite foundation[M]. Beijing: China Architecture and Building Press, 2006: 18-21. (in Chinese))
    [2] 王定才. 粉磨-搅拌一体化:中国商品混凝土产业的发展策略[J]. 混凝土, 2003(2): 20-23. (WANG Ding-cai. Grinding-stirring integration: The development strategy of China's commercial concrete industry[J]. Concrete, 2003(2): 20-23. (in Chinese))
    [3] 寇 新, 李金峰. 煤炭是我国能源节约的重点[J]. 煤炭经济研究, 2004(8): 12-13. (KOU Xin, LI Jin-fen. Coal is the focus of China's energy conservation[J]. Coal Economic Research, 2004(8): 12-13. (in Chinese))
    [4] 李涛平. 中国水泥工业能效现状和节能潜力报告[J]. 水泥工程, 2004(4): 1-10. (LI Tao-ping. China's cement industry energy efficiency and energy saving potential Situation Report[J]. Cement Engineering, 2004(4): 1-10. (in Chinese))
    [5] Intergovernmental Panel on Climate Change. Sources of CO2 [C]// IPCC Special Report on Carbon Dioxide Capture and Storage, IPCC. Switzerland, 2004: 77-103.
    [6] World Business Council for Sustainable Development. The Cement Sustainability Initiative-Our Agenda for Action[C]// WBCSD, Conches-Geneva. Switzerland, 2002.
    [7] YI Y L, LISKA M, UNLUER C, et al. Carbonating magnesia for soil stabilisation[J]. Canadian Geotechnical Journal, 2013, 50: 899-905.
    [8] CAI G H, LIU S Y, DU Y J, et al. Strength and deformation characteristics of carbonated reactive magnesia treated silt soil[J]. Journal of Central South University, 2015, 22(5): 1859-1868.
    [9] CAI G H, DU Y J, LIU S Y, et al. Physical properties, electrical resistivity and strength characteristics of carbonated silty soil admixed with reactive magnesia[J]. Canadian Geotechnical Journal, 2015: 52(11): 1699-1713.
    [10] 易耀林, MARTIN Liska, ABIR Al-Tabbaa, 等. 一种土壤的碳化固化方法及其装置[P]. 中国, 201010604013.1, 2010. (YI Yao-lin, LISKA M, AL-TABBAA A, et al. A kind of soil carbonation curing method and device: China, 201010604013.1[P]. 2010. (in Chinese))
    [11] 易耀林, Martin Liska, Abir Al-Tabbaa, 等. 一种用于土体固化的绿色低碳固化剂[P]. 中国发明专利, 201010604325.2, 2010. (YI Yao-lin, LISKA M, AL-TABBAA A, et al. A kind of low-carbon curing agent used for soil stabilization: China, 201010604325.2[P]. 2010. (in Chinese))
    [12] 易耀林. 基于可持续发展的搅拌桩新技术与理论[D]. 南京: 东南大学, 2013. (YI Yao-lin. Sustainable novel deep mixing methods and theory[D]. Nanjing: Southeast University, 2013. (in Chinese))
    [13] 李 晨. 氧化镁活性对碳化搅拌桩加固效果影响研究[D].南京: 东南大学, 2014. (LI Chen. Influence of MgO activity on the stabilization efficiency of carbonated mixing method[D]. Nanjing: Southeast University, 2014. (in Chinese))
    [14] American Society for Testing and Materials (ASTM). Standard test method for wetting and drying test of solid wastes[S]. US: ASTM International, 2009
    [15] ESTABRAGH A R, PERESHKAFTIB M R S, PARSAEIC B, et al. Stabilised expansive soil behavior during wetting and drying[J]. International Journal of Pavement Engineering, 2013, 14(4): 418-427.
    [16] AHMED A, UGAI K. Environmental effects on durability of soil stabilized with recycled gypsum[J]. Cold Regions Science and Technology, 2011, 66: 84-92.
    [17] UNLUER C, Al-Tabbaa A. Enhancing the carbonation of MgO cement porous blocks through improved curing conditions[J]. Cement and Concrete Research, 2014(59): 55-65.
  • 期刊类型引用(5)

    1. 窦杰,向子林,许强,郑鹏麟,王协康,苏爱军,刘军旗,罗万祺. 机器学习在滑坡智能防灾减灾中的应用与发展趋势. 地球科学. 2023(05): 1657-1674 . 百度学术
    2. 姚未来,刘元雪,陈进,程香. 新工科背景下岩土工程学科研究生培养科研支架式教学模式构建. 高等建筑教育. 2022(02): 66-76 . 百度学术
    3. 董亮,阚新生,邓国如,徐杰,袁慧. 短期电力负荷预测的时间序列数据深度挖掘模型设计. 能源与环保. 2021(06): 207-212 . 百度学术
    4. 刘元雪,姚未来,陈进,郑颖人. 建构“创新”基因, 改革岩土塑性力学研究生教材. 高等工程教育研究. 2021(05): 100-105 . 百度学术
    5. 刘洋,于鹏强,张铎,王肖肖. 一个基于微观力学分析的散粒体应力–剪胀关系. 岩土工程学报. 2021(10): 1816-1824 . 本站查看

    其他类型引用(2)

计量
  • 文章访问数:  360
  • HTML全文浏览量:  1
  • PDF下载量:  427
  • 被引次数: 7
出版历程
  • 收稿日期:  2014-12-25
  • 发布日期:  2016-02-24

目录

    /

    返回文章
    返回