• 全国中文核心期刊
  • 中国科技核心期刊
  • 美国工程索引(EI)收录期刊
  • Scopus数据库收录期刊

地层沉陷中埋地HDPE管道力学状态及模型试验分析

周敏, 杜延军, 王非, 尤佺, 董冬冬

周敏, 杜延军, 王非, 尤佺, 董冬冬. 地层沉陷中埋地HDPE管道力学状态及模型试验分析[J]. 岩土工程学报, 2016, 38(2): 253-262. DOI: 10.11779/CJGE201602008
引用本文: 周敏, 杜延军, 王非, 尤佺, 董冬冬. 地层沉陷中埋地HDPE管道力学状态及模型试验分析[J]. 岩土工程学报, 2016, 38(2): 253-262. DOI: 10.11779/CJGE201602008
ZHOU Min, DU Yan-jun, WANG Fei, YOU Quan, DONG Dong-dong. Physical modeling of mechanical responses of HDPE pipes and subsurface settlement caused by land subsidence[J]. Chinese Journal of Geotechnical Engineering, 2016, 38(2): 253-262. DOI: 10.11779/CJGE201602008
Citation: ZHOU Min, DU Yan-jun, WANG Fei, YOU Quan, DONG Dong-dong. Physical modeling of mechanical responses of HDPE pipes and subsurface settlement caused by land subsidence[J]. Chinese Journal of Geotechnical Engineering, 2016, 38(2): 253-262. DOI: 10.11779/CJGE201602008

地层沉陷中埋地HDPE管道力学状态及模型试验分析  English Version

基金项目: 江苏省自然科学基金面上项目(BK2013294, BK2012022); 国家自然科学基金项目(51278100, 41472258); 中央高校基本科研业; 务费专项资金项目; 江苏省普通高校研究生科研创新计划资助项目
详细信息
    作者简介:

    周 敏 (1988- ),男,博士研究生,主要从事地下管道受力变形的研究。E-mail: zhoumin212212@163.com。

Physical modeling of mechanical responses of HDPE pipes and subsurface settlement caused by land subsidence

  • 摘要: 地层沉陷致埋地HDPE管道事故频发,主要原因之一是地层沉陷过程中所诱发的管道附加应力和变形剧增,从而导致管道破坏。已有研究成果大多集中于固定尺寸沉陷区域管道与周围土体力学特性的分析,尚无相关理论预测沉陷发展过程中管道力学响应特征变化规律。利用自制室内足尺大型模型试验系统,以粗砂为管道开挖沟槽回填料,通过调整模型箱底板的下沉模拟地层沉陷形成过程,研究埋地HDPE双壁波纹管道的受力变形特性及其上覆回填料土体的沉降分布规律。试验结果表明:①地层沉陷过程中HDPE管道的竖向变形符合修正高斯分布曲线;②随着土体沉陷的发展,管道顶部土压力随之增大,且试验管道顶部的土拱率由0.7增大到2.05,呈现出明显负土拱效应;③对于相同抗弯刚度管道,土体沉陷变形所致管道附加变形随管道上覆土层厚度的减小而减小;④随着管道抗弯刚度增加,埋地管道对于土体的沉降抑制作用愈加明显。
    Abstract: Failure of buried high-density polyethylene (HDPE) pipes caused by land subsidence is often encountered in the engineering practice. The main reason is the additional stress and strain on the buried HDPE pipes induced by the land subsidence. Most of the previous studies focus on the mechanical responses of HDPE pipes to a mobilized zone in the ground with a specific size. However, no analytical methods are available to evaluate the pipe responses during the process of ground movement. In this study, coarse sand is filled in a custom-made pipe-soil interaction testing system, and the lowering of the adjustable bottom of the test box is used to simulate the effect of land subsidence. During the test process, the earth pressure, deformation of HDPE pipes and subsurface settlement above the pipe are measured. The test results demonstrate that (1) The vertical deflection distribution of HDPE pipes in the longitudinal direction agrees well with the modified Gaussian curve; (2) The vertical earth pressure on the pipe crown increases with the lowering of the bottom plates, and the soil arching ratio at the pipe crown increases from 0.7 to 2.05, which indicates that negative soil arching occurs above the pipe during the ground movement; (3) The effect of the ground movement on the deformation of HDPE pipes gradually decreases with the decrease of the thickness of soil cover; (4) The magnitude of the subsurface settlement above the pipe is limited more significantly when the bending stiffness of the pipe increases.
  • [1] 吴 念. 我国HDPE双壁波纹管发展现状[J]. 塑料, 2007, 36(5): 39-42. (WU Nian. Development of domestic double-wall corrugated pipes[J]. Plastics, 2007, 36(5): 39-42. (in Chinese))
    [2] 陈秀华. HDPE 双壁波纹管在市政排水工程中的应用优势[J]. 广东建材, 2006(6): 7-9. (CHEN Xiu-hua. The advantages of HDPE double-wall corrugated pipe in municipal drainage project[J]. Guangdong Building Materials, 2006(6): 7-9. (in Chinese))
    [3] 邢丽霞, 阙列东. 我国的地面塌陷及其危害[J]. 中国地质灾害与防治学报, 1997, 8(增刊): 23-28. (XING Li-xia, QUE Lie-dong. The distribution and harm of the land collapses in China[J]. Chinese Journal of Geological Hazaro and Control, 1997, 8(S): 23-28. (in Chinese))
    [4] WINKLER E. Die Lehre von der Elastizität und Festigkeit[D]. Czechoslovakia: Dominicus Prague, 1867. (WINKLER E. The theory of elasticity and stiffness[D]. Czechoslovakia: Dominicus Prague, 1867. (in Czech))
    [5] HETENYI M. Beams on elastic foundation: theory with applications in the fields of civil and mechanical engineering[M]. Ann Arbor: University of Michigan Press, 1964.
    [6] 张士乔, 李 洵, 吴小刚. 地基差异沉降时管道的纵向力学性状分析[J]. 中国农村水利水电, 2003(7): 46-48. (ZHANG Tu-qiao, LI Xun, WU Xiao-gang. Analysis of longitudinal mechanical properties for pipeline during foundation uneven settlement[J]. China Rural Water and Hydropower, 2003(7): 46-48. (in Chinese))
    [7] KERR A D. Elastic and viscoelastic foundation models[J]. Journal of Applied Mechanics, 1964, 31(3): 491-498.
    [8] FILONENKO-BORODICH M M. Some approximate theories of the elastic foundation[J]. Uchenyie Zapiski Moskovskogo Gosudarstuennogo Universiteta Mechanika, 1940, 46: 3-18.
    [9] HETENYI M. A general solution for the bending of beams on an elastic foundation of arbitrary continuity[J]. Journal of Applied Physics, 2004, 21(1): 55-58.
    [10] KERR A D. Elastic and viscoelastic foundation models[J]. Journal of Applied Mechanics, 1964, 31(3): 491-498.
    [11] 申文明, 唐晓武, 边学成, 等. 地基不均匀沉降时埋地管涵纵向力学模型探讨[J]. 工业建筑, 2010(10): 82-85. (SHEN Wen-ming, TANG Xiao-wu, BIAN Xue-cheng. Study on the longitudinal mechanical model of buried culvert during foundation differential settlement[J]. Industrial Construction, 2010(10): 82-85. (in Chinese))
    [12] 冯启民, 高惠英. 受沉陷作用埋地管道破坏判别方法[J]. 地震工程与工程振动, 1997, 17(2): 59-66. (FENG Qi-min, GAO Hun-ying. Damage criteria of buried pipelines through ground settlement zone[J]. Earthquake Engineering and Engineering Vibration, 1997, 17(2): 59-66. (in Chinese))
    [13] 高惠瑛, 冯启民. 场地沉陷埋地管道反应分析方法[J]. 地震工程与工程振动, 1997, 17(1): 68-75. (GAO Hui-ying, FENG Qi-min. Response analysis for buried pipelines through settlement zone[J]. Earthquake Engineering and Engineering Vibration, 1997, 17(1): 68-75. (in Chinese))
    [14] 柳春光, 史永霞. 沉陷区域埋地管线数值模拟分析[J]. 地震工程与工程振动, 2008, 28(4): 178-183. (LIU Chun-guang, SHI Yong-xia. Numerical analysis of buried pipelines subjected to the settlement[J]. Earthquake Engineering and Engineering Vibration, 2008, 28(4): 178-183. (in Chinese))
    [15] 刘学杰, 孙绍平. 地下管道穿越断层的应变设计方法[J]. 特种结构,2005, 22(2): 81-85. (LIU Xue-jie, SUN Shao-ping. The strain-based design method of underground pipeline crossing faults[J]. Special Structure, 2005, 22(2): 81-85. (in Chinese))
    [16] 李小军, 侯春林, 赵 雷, 等. 考虑压缩失效时埋地管线跨地震断层的最佳交角研究[J]. 应用基础与工程科学学报, 2006, 14(2): 203-209. (LI Xiao-jun, HOU Chun-lin, ZHAO Lei. Study on the best crossing angle between pipeline and faoult considering compression failure of pipe[J]. Journal of Basic Science and Engineering, 2006, 14(2): 203-209. (in Chinese))
    [17] 金 浏, 王 苏, 杜修力. 场地沉陷作用下埋地管道屈曲反应分析[J]. 世界地震工程, 2011, 27(2): 142-147. (JIN Liu, WANG Su, DU Xiu-li. Buckling respionse analysis of buried pipelines subjected to the site soil settlement[J]. World Earthquake Engineering, 2011, 27(2): 142-147. (in Chinese))
    [18] RAKITIN B, XU M. Centrifuge testing to simulate buried reinforced concrete pipe joints subjected to traffic loading[J]. Canadian Geotechnical Journal, 2015, 52(11): 1762-1774.
    [19] VORSTER T E B. The effects of tunnelling on buried pipes[D]. Cambridge: Cambridge University, 2005.
    [20] WANG F, DU Y J, YANG X M. Physical modeling on ground responses to tunneling in sand considering the existence of HDPE pipes[J]. Geotechnical Testing Journal, 2015, 38(1): 85-97.
    [21] DHAR A S, MOORE I D, MCGRATH T J. Two-dimensional analyses of thermoplastic culvert deformations and strains[J]. Journal of Geotechnical and Geoenvironmental Engineering, 2004, 130(2): 199-208.
    [22] COREY R, HAN J, KHATRI D K, et al. Laboratory study on geosynthetic protection of buried steel-reinforced HDPE pipes from static loading[J]. Journal of Geotechnical and Geoenvironmental Engineering, 2014, 140(6): 1-10.
    [23] VORSTER T E, KLAR A, SOGA K, et al. Estimating the effects of tunneling on existing pipelines[J]. Journal of Geotechnical and Geoenvironmental Engineering, 2005, 131(11): 1399-1410.
  • 期刊类型引用(6)

    1. 张德沧,毛佳,戴妙林,邵琳玉,赵兰浩. 圆化离散单元法的改进及其在岩体断裂过程中的应用. 岩土工程学报. 2024(09): 1974-1983 . 本站查看
    2. 何荣兴,张智源,张星宇,章雅雯. 诱导下岩体裂隙扩展规律研究存在问题及对策. 中国矿业. 2024(10): 168-176 . 百度学术
    3. 刘洋,吴志军,储昭飞,翁磊,徐翔宇,周原,高波,毛春光. 基于FDEM的围压条件下机械冲击破岩机理研究. 中南大学学报(自然科学版). 2023(03): 866-879 . 百度学术
    4. 杨奎斌,朱彦鹏. 考虑后缘裂缝影响的均质土坡滑动面形式及搜索研究. 应用基础与工程科学学报. 2022(05): 1216-1227 . 百度学术
    5. 张亚军,莫思阳,张友良. 基于修正牛顿-拉普森迭代的数值流形法. 计算机仿真. 2022(09): 394-397+440 . 百度学术
    6. 韩笑. 基于高阶块体元-有限元建模的混凝土细观数值分析. 粉煤灰综合利用. 2021(03): 56-63 . 百度学术

    其他类型引用(7)

计量
  • 文章访问数:  435
  • HTML全文浏览量:  3
  • PDF下载量:  467
  • 被引次数: 13
出版历程
  • 收稿日期:  2015-03-20
  • 发布日期:  2016-02-24

目录

    /

    返回文章
    返回