Citation: | ZHOU Min, DU Yan-jun, WANG Fei, YOU Quan, DONG Dong-dong. Physical modeling of mechanical responses of HDPE pipes and subsurface settlement caused by land subsidence[J]. Chinese Journal of Geotechnical Engineering, 2016, 38(2): 253-262. DOI: 10.11779/CJGE201602008 |
[1] |
吴 念. 我国HDPE双壁波纹管发展现状[J]. 塑料, 2007, 36(5): 39-42. (WU Nian. Development of domestic double-wall corrugated pipes[J]. Plastics, 2007, 36(5): 39-42. (in Chinese))
|
[2] |
陈秀华. HDPE 双壁波纹管在市政排水工程中的应用优势[J]. 广东建材, 2006(6): 7-9. (CHEN Xiu-hua. The advantages of HDPE double-wall corrugated pipe in municipal drainage project[J]. Guangdong Building Materials, 2006(6): 7-9. (in Chinese))
|
[3] |
邢丽霞, 阙列东. 我国的地面塌陷及其危害[J]. 中国地质灾害与防治学报, 1997, 8(增刊): 23-28. (XING Li-xia, QUE Lie-dong. The distribution and harm of the land collapses in China[J]. Chinese Journal of Geological Hazaro and Control, 1997, 8(S): 23-28. (in Chinese))
|
[4] |
WINKLER E. Die Lehre von der Elastizität und Festigkeit[D]. Czechoslovakia: Dominicus Prague, 1867. (WINKLER E. The theory of elasticity and stiffness[D]. Czechoslovakia: Dominicus Prague, 1867. (in Czech))
|
[5] |
HETENYI M. Beams on elastic foundation: theory with applications in the fields of civil and mechanical engineering[M]. Ann Arbor: University of Michigan Press, 1964.
|
[6] |
张士乔, 李 洵, 吴小刚. 地基差异沉降时管道的纵向力学性状分析[J]. 中国农村水利水电, 2003(7): 46-48. (ZHANG Tu-qiao, LI Xun, WU Xiao-gang. Analysis of longitudinal mechanical properties for pipeline during foundation uneven settlement[J]. China Rural Water and Hydropower, 2003(7): 46-48. (in Chinese))
|
[7] |
KERR A D. Elastic and viscoelastic foundation models[J]. Journal of Applied Mechanics, 1964, 31(3): 491-498.
|
[8] |
FILONENKO-BORODICH M M. Some approximate theories of the elastic foundation[J]. Uchenyie Zapiski Moskovskogo Gosudarstuennogo Universiteta Mechanika, 1940, 46: 3-18.
|
[9] |
HETENYI M. A general solution for the bending of beams on an elastic foundation of arbitrary continuity[J]. Journal of Applied Physics, 2004, 21(1): 55-58.
|
[10] |
KERR A D. Elastic and viscoelastic foundation models[J]. Journal of Applied Mechanics, 1964, 31(3): 491-498.
|
[11] |
申文明, 唐晓武, 边学成, 等. 地基不均匀沉降时埋地管涵纵向力学模型探讨[J]. 工业建筑, 2010(10): 82-85. (SHEN Wen-ming, TANG Xiao-wu, BIAN Xue-cheng. Study on the longitudinal mechanical model of buried culvert during foundation differential settlement[J]. Industrial Construction, 2010(10): 82-85. (in Chinese))
|
[12] |
冯启民, 高惠英. 受沉陷作用埋地管道破坏判别方法[J]. 地震工程与工程振动, 1997, 17(2): 59-66. (FENG Qi-min, GAO Hun-ying. Damage criteria of buried pipelines through ground settlement zone[J]. Earthquake Engineering and Engineering Vibration, 1997, 17(2): 59-66. (in Chinese))
|
[13] |
高惠瑛, 冯启民. 场地沉陷埋地管道反应分析方法[J]. 地震工程与工程振动, 1997, 17(1): 68-75. (GAO Hui-ying, FENG Qi-min. Response analysis for buried pipelines through settlement zone[J]. Earthquake Engineering and Engineering Vibration, 1997, 17(1): 68-75. (in Chinese))
|
[14] |
柳春光, 史永霞. 沉陷区域埋地管线数值模拟分析[J]. 地震工程与工程振动, 2008, 28(4): 178-183. (LIU Chun-guang, SHI Yong-xia. Numerical analysis of buried pipelines subjected to the settlement[J]. Earthquake Engineering and Engineering Vibration, 2008, 28(4): 178-183. (in Chinese))
|
[15] |
刘学杰, 孙绍平. 地下管道穿越断层的应变设计方法[J]. 特种结构,2005, 22(2): 81-85. (LIU Xue-jie, SUN Shao-ping. The strain-based design method of underground pipeline crossing faults[J]. Special Structure, 2005, 22(2): 81-85. (in Chinese))
|
[16] |
李小军, 侯春林, 赵 雷, 等. 考虑压缩失效时埋地管线跨地震断层的最佳交角研究[J]. 应用基础与工程科学学报, 2006, 14(2): 203-209. (LI Xiao-jun, HOU Chun-lin, ZHAO Lei. Study on the best crossing angle between pipeline and faoult considering compression failure of pipe[J]. Journal of Basic Science and Engineering, 2006, 14(2): 203-209. (in Chinese))
|
[17] |
金 浏, 王 苏, 杜修力. 场地沉陷作用下埋地管道屈曲反应分析[J]. 世界地震工程, 2011, 27(2): 142-147. (JIN Liu, WANG Su, DU Xiu-li. Buckling respionse analysis of buried pipelines subjected to the site soil settlement[J]. World Earthquake Engineering, 2011, 27(2): 142-147. (in Chinese))
|
[18] |
RAKITIN B, XU M. Centrifuge testing to simulate buried reinforced concrete pipe joints subjected to traffic loading[J]. Canadian Geotechnical Journal, 2015, 52(11): 1762-1774.
|
[19] |
VORSTER T E B. The effects of tunnelling on buried pipes[D]. Cambridge: Cambridge University, 2005.
|
[20] |
WANG F, DU Y J, YANG X M. Physical modeling on ground responses to tunneling in sand considering the existence of HDPE pipes[J]. Geotechnical Testing Journal, 2015, 38(1): 85-97.
|
[21] |
DHAR A S, MOORE I D, MCGRATH T J. Two-dimensional analyses of thermoplastic culvert deformations and strains[J]. Journal of Geotechnical and Geoenvironmental Engineering, 2004, 130(2): 199-208.
|
[22] |
COREY R, HAN J, KHATRI D K, et al. Laboratory study on geosynthetic protection of buried steel-reinforced HDPE pipes from static loading[J]. Journal of Geotechnical and Geoenvironmental Engineering, 2014, 140(6): 1-10.
|
[23] |
VORSTER T E, KLAR A, SOGA K, et al. Estimating the effects of tunneling on existing pipelines[J]. Journal of Geotechnical and Geoenvironmental Engineering, 2005, 131(11): 1399-1410.
|
[1] | SUN Ruohan, LIU Run, WANG Xiaolei, ZHANG Huan. Effects of horizontal and three-dimensional reinforcement on frost-heaving and thawing-settlement in seasonally frozen soils[J]. Chinese Journal of Geotechnical Engineering, 2024, 46(S1): 16-21. DOI: 10.11779/CJGE2024S10025 |
[2] | LING Xian-zhang, LUO Jun, GENG Lin, TANG Liang. Coupled hydro-thermo-deformation frost heave model for unsaturated expansive soils in seasonally frozen soil regions[J]. Chinese Journal of Geotechnical Engineering, 2022, 44(7): 1255-1265. DOI: 10.11779/CJGE202207006 |
[3] | HUANG Ying-hao, CAI Zheng-yin, ZHU Rui, ZHANG Chen, GUO Wan-li, ZHU Xun, CHEN Yong. Development of centrifuge model test equipment for canals in seasonal frozen areas under cyclic action of wetting-drying and freeze-thaw[J]. Chinese Journal of Geotechnical Engineering, 2020, 42(7): 1181-1188. DOI: 10.11779/CJGE202007001 |
[4] | CHEN Rong, WANG Xi-qiang, HAO Dong-xue, SONG Yang-yang, XUE Nan. Experimental investigation on reinforced characteristics of geogrids in seasonal frozen soil[J]. Chinese Journal of Geotechnical Engineering, 2019, 41(6): 1101-1107. DOI: 10.11779/CJGE201906014 |
[5] | XU Li-li, LIU Li-jia, XU Zhao-wei, ZHANG Bin. Integrated protection technology for expansive soil slopes in seasonally frozen zones[J]. Chinese Journal of Geotechnical Engineering, 2016, 38(zk1): 216-220. DOI: 10.11779/CJGE2016S1040 |
[6] | FENG Qiang, WANG Gang, JIANG Bin-song. Analytical method for thawing analysis of surrounding rock in seasonal cold region tunnels[J]. Chinese Journal of Geotechnical Engineering, 2015, 37(10): 1835-1843. DOI: 10.11779/CJGE201510012 |
[7] | WANG Zi-yu, LING Xian-zhang, HUI Su-qing. Field monitoring of vibration response of subgrade in a seasonally frozen region[J]. Chinese Journal of Geotechnical Engineering, 2015, 37(9): 1591-1598. DOI: 10.11779/CJGE201509005 |
[8] | CHEN Zhuo-shi, LI Zhao-yan, SUN Rui. Ground response in seasonal frozen regions under moderate intensity earthquakes[J]. Chinese Journal of Geotechnical Engineering, 2013, 35(zk1): 406-411. |
[9] | ZHANG Zhi-hao, MA Lin, HAN Xiao-meng, HE Jing-yu. Frost heaving deformation control of pile-anchor retaining structure of deep foundation pits in seasonal frozen soil regions[J]. Chinese Journal of Geotechnical Engineering, 2012, 34(suppl): 65-71. |
[10] | LIU Hongjun, TAO Xiaxin. Consolidation settlement characteristics of soft foundation in seasonal frozen swamp regions[J]. Chinese Journal of Geotechnical Engineering, 2009, 31(9): 1354-1360. |
1. |
黄飞虎,裴彦飞,苏谦,王鑫,杨鸿麟,李艳东. 螺旋钢桩加固边坡抗滑承载特性研究. 铁道科学与工程学报. 2024(02): 578-590 .
![]() | |
2. |
李绪勇,杨忠平,刘纲,李勇华,张益铭. 隔离式螺旋桩抗压承载与抗地基冻融特性. 岩土工程学报. 2024(06): 1187-1196 .
![]() | |
3. |
车松阳,裴碧莹,徐洪俊. 螺旋桩室内模型试验设计及结果分析. 科技创新与应用. 2024(17): 68-71 .
![]() | |
4. |
周亚龙,王旭,蒋代军,刘德仁,何菲,晏昌,牛富俊. 青藏铁路接触网异型桩基抗冻拔模型试验研究. 西南交通大学学报. 2024(03): 677-684 .
![]() | |
5. |
孙铁成,杨逸,杨茜,董创奇. 开敞系统中冻土-混凝土界面抗拉强度试验研究. 石家庄铁道大学学报(自然科学版). 2024(02): 92-98 .
![]() | |
6. |
郝冬雪,王磊,陈榕,莫凯强,孔纲强,高宇聪. 冻融循环下粉砂中螺旋锚抗拔稳定模型试验研究. 岩土工程学报. 2023(01): 57-65 .
![]() | |
7. |
陈强,李驰,高利平. 基于图像处理技术水分迁移对光伏桩冻拔稳定性影响的试验研究. 太阳能学报. 2023(01): 49-54 .
![]() | |
8. |
田天伦,苏安双,贾青,王淼. 光伏螺旋桩基抗冻拔数值模拟. 水利科学与寒区工程. 2023(03): 1-6 .
![]() | |
9. |
吴炅,陈鹏飞,尹啸笛,郝洪策,梁成军. 桩体结构参数对螺旋桩-土冻胀性能的影响. 河南科学. 2023(07): 964-969 .
![]() | |
10. |
张学礼,崔强,张树林. 冻土地基中锥管板条装配式基础抗拔承载性能试验研究. 地质科技通报. 2022(02): 335-342 .
![]() | |
11. |
熊维林,葛洪林,富海鹰. 考虑非对称冻结的塔杆基础模型实验研究. 铁道科学与工程学报. 2022(04): 931-940 .
![]() | |
12. |
王卫东,崔强,韩杨春,张树林,孟宪乔. 高寒地区输电线路锥管板条装配式基础抗冻拔性能试验研究. 防灾减灾工程学报. 2022(03): 542-552 .
![]() | |
13. |
王超哲,吴进,王立兴,刘浩,杨紫健,吴文兵. 黏弹性地基中螺旋桩水平动力特性. 中南大学学报(自然科学版). 2022(06): 2279-2289 .
![]() | |
14. |
杨朝旭,任刚,殷卫永,韩战涛,任文博,李佳佳. 钢管螺旋桩防护公路膨胀土高边坡工程应用. 公路. 2022(07): 41-48 .
![]() | |
15. |
陈明伟,陈航杰. 桩型对冻土桩基冻胀特性的影响研究. 甘肃科技. 2022(09): 8-12 .
![]() | |
16. |
黄旭斌,盛煜,黄龙,彭尔兴,曹伟,张玺彦,何彬彬. 单向冻结条件下扩底桩抗冻拔能力试验研究. 工程科学与技术. 2021(01): 122-131 .
![]() | |
17. |
屈讼昭,郭咏华,王仪,张斌,张建明,孙清. 大锚片螺旋锚在粉质黏土中的下压承载性能. 土木与环境工程学报(中英文). 2021(05): 34-44 .
![]() | |
18. |
高晓静,孙铁成,李晓康,廖一鸣. 冻结作用下粉土-混凝土接触面抗拉强度试验研究. 冰川冻土. 2020(02): 499-507 .
![]() | |
19. |
黄旭斌,盛煜,黄龙,何彬彬,张玺彦. 季节冻土区扩底单桩受力性能研究进展与展望. 冰川冻土. 2020(04): 1220-1228 .
![]() | |
20. |
王希云,邵康,苏谦,刘凯文,邹婷. 单叶片螺旋钢桩竖向承载特性数值分析. 铁道标准设计. 2019(07): 66-71 .
![]() | |
21. |
王希云. 螺旋钢桩设计参数对抗压承载性能的影响研究. 路基工程. 2019(03): 57-61 .
![]() | |
22. |
邵康,苏谦,刘凯文,李婷,周珩. 竖向受压下考虑安装扰动螺旋钢桩数值模拟分析与现场载荷试验. 岩石力学与工程学报. 2019(12): 2570-2581 .
![]() |