• 全国中文核心期刊
  • 中国科技核心期刊
  • 美国工程索引(EI)收录期刊
  • Scopus数据库收录期刊
ZHOU Min, DU Yan-jun, WANG Fei, YOU Quan, DONG Dong-dong. Physical modeling of mechanical responses of HDPE pipes and subsurface settlement caused by land subsidence[J]. Chinese Journal of Geotechnical Engineering, 2016, 38(2): 253-262. DOI: 10.11779/CJGE201602008
Citation: ZHOU Min, DU Yan-jun, WANG Fei, YOU Quan, DONG Dong-dong. Physical modeling of mechanical responses of HDPE pipes and subsurface settlement caused by land subsidence[J]. Chinese Journal of Geotechnical Engineering, 2016, 38(2): 253-262. DOI: 10.11779/CJGE201602008

Physical modeling of mechanical responses of HDPE pipes and subsurface settlement caused by land subsidence

More Information
  • Received Date: March 20, 2015
  • Published Date: February 24, 2016
  • Failure of buried high-density polyethylene (HDPE) pipes caused by land subsidence is often encountered in the engineering practice. The main reason is the additional stress and strain on the buried HDPE pipes induced by the land subsidence. Most of the previous studies focus on the mechanical responses of HDPE pipes to a mobilized zone in the ground with a specific size. However, no analytical methods are available to evaluate the pipe responses during the process of ground movement. In this study, coarse sand is filled in a custom-made pipe-soil interaction testing system, and the lowering of the adjustable bottom of the test box is used to simulate the effect of land subsidence. During the test process, the earth pressure, deformation of HDPE pipes and subsurface settlement above the pipe are measured. The test results demonstrate that (1) The vertical deflection distribution of HDPE pipes in the longitudinal direction agrees well with the modified Gaussian curve; (2) The vertical earth pressure on the pipe crown increases with the lowering of the bottom plates, and the soil arching ratio at the pipe crown increases from 0.7 to 2.05, which indicates that negative soil arching occurs above the pipe during the ground movement; (3) The effect of the ground movement on the deformation of HDPE pipes gradually decreases with the decrease of the thickness of soil cover; (4) The magnitude of the subsurface settlement above the pipe is limited more significantly when the bending stiffness of the pipe increases.
  • [1]
    吴 念. 我国HDPE双壁波纹管发展现状[J]. 塑料, 2007, 36(5): 39-42. (WU Nian. Development of domestic double-wall corrugated pipes[J]. Plastics, 2007, 36(5): 39-42. (in Chinese))
    [2]
    陈秀华. HDPE 双壁波纹管在市政排水工程中的应用优势[J]. 广东建材, 2006(6): 7-9. (CHEN Xiu-hua. The advantages of HDPE double-wall corrugated pipe in municipal drainage project[J]. Guangdong Building Materials, 2006(6): 7-9. (in Chinese))
    [3]
    邢丽霞, 阙列东. 我国的地面塌陷及其危害[J]. 中国地质灾害与防治学报, 1997, 8(增刊): 23-28. (XING Li-xia, QUE Lie-dong. The distribution and harm of the land collapses in China[J]. Chinese Journal of Geological Hazaro and Control, 1997, 8(S): 23-28. (in Chinese))
    [4]
    WINKLER E. Die Lehre von der Elastizität und Festigkeit[D]. Czechoslovakia: Dominicus Prague, 1867. (WINKLER E. The theory of elasticity and stiffness[D]. Czechoslovakia: Dominicus Prague, 1867. (in Czech))
    [5]
    HETENYI M. Beams on elastic foundation: theory with applications in the fields of civil and mechanical engineering[M]. Ann Arbor: University of Michigan Press, 1964.
    [6]
    张士乔, 李 洵, 吴小刚. 地基差异沉降时管道的纵向力学性状分析[J]. 中国农村水利水电, 2003(7): 46-48. (ZHANG Tu-qiao, LI Xun, WU Xiao-gang. Analysis of longitudinal mechanical properties for pipeline during foundation uneven settlement[J]. China Rural Water and Hydropower, 2003(7): 46-48. (in Chinese))
    [7]
    KERR A D. Elastic and viscoelastic foundation models[J]. Journal of Applied Mechanics, 1964, 31(3): 491-498.
    [8]
    FILONENKO-BORODICH M M. Some approximate theories of the elastic foundation[J]. Uchenyie Zapiski Moskovskogo Gosudarstuennogo Universiteta Mechanika, 1940, 46: 3-18.
    [9]
    HETENYI M. A general solution for the bending of beams on an elastic foundation of arbitrary continuity[J]. Journal of Applied Physics, 2004, 21(1): 55-58.
    [10]
    KERR A D. Elastic and viscoelastic foundation models[J]. Journal of Applied Mechanics, 1964, 31(3): 491-498.
    [11]
    申文明, 唐晓武, 边学成, 等. 地基不均匀沉降时埋地管涵纵向力学模型探讨[J]. 工业建筑, 2010(10): 82-85. (SHEN Wen-ming, TANG Xiao-wu, BIAN Xue-cheng. Study on the longitudinal mechanical model of buried culvert during foundation differential settlement[J]. Industrial Construction, 2010(10): 82-85. (in Chinese))
    [12]
    冯启民, 高惠英. 受沉陷作用埋地管道破坏判别方法[J]. 地震工程与工程振动, 1997, 17(2): 59-66. (FENG Qi-min, GAO Hun-ying. Damage criteria of buried pipelines through ground settlement zone[J]. Earthquake Engineering and Engineering Vibration, 1997, 17(2): 59-66. (in Chinese))
    [13]
    高惠瑛, 冯启民. 场地沉陷埋地管道反应分析方法[J]. 地震工程与工程振动, 1997, 17(1): 68-75. (GAO Hui-ying, FENG Qi-min. Response analysis for buried pipelines through settlement zone[J]. Earthquake Engineering and Engineering Vibration, 1997, 17(1): 68-75. (in Chinese))
    [14]
    柳春光, 史永霞. 沉陷区域埋地管线数值模拟分析[J]. 地震工程与工程振动, 2008, 28(4): 178-183. (LIU Chun-guang, SHI Yong-xia. Numerical analysis of buried pipelines subjected to the settlement[J]. Earthquake Engineering and Engineering Vibration, 2008, 28(4): 178-183. (in Chinese))
    [15]
    刘学杰, 孙绍平. 地下管道穿越断层的应变设计方法[J]. 特种结构,2005, 22(2): 81-85. (LIU Xue-jie, SUN Shao-ping. The strain-based design method of underground pipeline crossing faults[J]. Special Structure, 2005, 22(2): 81-85. (in Chinese))
    [16]
    李小军, 侯春林, 赵 雷, 等. 考虑压缩失效时埋地管线跨地震断层的最佳交角研究[J]. 应用基础与工程科学学报, 2006, 14(2): 203-209. (LI Xiao-jun, HOU Chun-lin, ZHAO Lei. Study on the best crossing angle between pipeline and faoult considering compression failure of pipe[J]. Journal of Basic Science and Engineering, 2006, 14(2): 203-209. (in Chinese))
    [17]
    金 浏, 王 苏, 杜修力. 场地沉陷作用下埋地管道屈曲反应分析[J]. 世界地震工程, 2011, 27(2): 142-147. (JIN Liu, WANG Su, DU Xiu-li. Buckling respionse analysis of buried pipelines subjected to the site soil settlement[J]. World Earthquake Engineering, 2011, 27(2): 142-147. (in Chinese))
    [18]
    RAKITIN B, XU M. Centrifuge testing to simulate buried reinforced concrete pipe joints subjected to traffic loading[J]. Canadian Geotechnical Journal, 2015, 52(11): 1762-1774.
    [19]
    VORSTER T E B. The effects of tunnelling on buried pipes[D]. Cambridge: Cambridge University, 2005.
    [20]
    WANG F, DU Y J, YANG X M. Physical modeling on ground responses to tunneling in sand considering the existence of HDPE pipes[J]. Geotechnical Testing Journal, 2015, 38(1): 85-97.
    [21]
    DHAR A S, MOORE I D, MCGRATH T J. Two-dimensional analyses of thermoplastic culvert deformations and strains[J]. Journal of Geotechnical and Geoenvironmental Engineering, 2004, 130(2): 199-208.
    [22]
    COREY R, HAN J, KHATRI D K, et al. Laboratory study on geosynthetic protection of buried steel-reinforced HDPE pipes from static loading[J]. Journal of Geotechnical and Geoenvironmental Engineering, 2014, 140(6): 1-10.
    [23]
    VORSTER T E, KLAR A, SOGA K, et al. Estimating the effects of tunneling on existing pipelines[J]. Journal of Geotechnical and Geoenvironmental Engineering, 2005, 131(11): 1399-1410.
  • Related Articles

    [1]SUN Ruohan, LIU Run, WANG Xiaolei, ZHANG Huan. Effects of horizontal and three-dimensional reinforcement on frost-heaving and thawing-settlement in seasonally frozen soils[J]. Chinese Journal of Geotechnical Engineering, 2024, 46(S1): 16-21. DOI: 10.11779/CJGE2024S10025
    [2]LING Xian-zhang, LUO Jun, GENG Lin, TANG Liang. Coupled hydro-thermo-deformation frost heave model for unsaturated expansive soils in seasonally frozen soil regions[J]. Chinese Journal of Geotechnical Engineering, 2022, 44(7): 1255-1265. DOI: 10.11779/CJGE202207006
    [3]HUANG Ying-hao, CAI Zheng-yin, ZHU Rui, ZHANG Chen, GUO Wan-li, ZHU Xun, CHEN Yong. Development of centrifuge model test equipment for canals in seasonal frozen areas under cyclic action of wetting-drying and freeze-thaw[J]. Chinese Journal of Geotechnical Engineering, 2020, 42(7): 1181-1188. DOI: 10.11779/CJGE202007001
    [4]CHEN Rong, WANG Xi-qiang, HAO Dong-xue, SONG Yang-yang, XUE Nan. Experimental investigation on reinforced characteristics of geogrids in seasonal frozen soil[J]. Chinese Journal of Geotechnical Engineering, 2019, 41(6): 1101-1107. DOI: 10.11779/CJGE201906014
    [5]XU Li-li, LIU Li-jia, XU Zhao-wei, ZHANG Bin. Integrated protection technology for expansive soil slopes in seasonally frozen zones[J]. Chinese Journal of Geotechnical Engineering, 2016, 38(zk1): 216-220. DOI: 10.11779/CJGE2016S1040
    [6]FENG Qiang, WANG Gang, JIANG Bin-song. Analytical method for thawing analysis of surrounding rock in seasonal cold region tunnels[J]. Chinese Journal of Geotechnical Engineering, 2015, 37(10): 1835-1843. DOI: 10.11779/CJGE201510012
    [7]WANG Zi-yu, LING Xian-zhang, HUI Su-qing. Field monitoring of vibration response of subgrade in a seasonally frozen region[J]. Chinese Journal of Geotechnical Engineering, 2015, 37(9): 1591-1598. DOI: 10.11779/CJGE201509005
    [8]CHEN Zhuo-shi, LI Zhao-yan, SUN Rui. Ground response in seasonal frozen regions under moderate intensity earthquakes[J]. Chinese Journal of Geotechnical Engineering, 2013, 35(zk1): 406-411.
    [9]ZHANG Zhi-hao, MA Lin, HAN Xiao-meng, HE Jing-yu. Frost heaving deformation control of pile-anchor retaining structure of deep foundation pits in seasonal frozen soil regions[J]. Chinese Journal of Geotechnical Engineering, 2012, 34(suppl): 65-71.
    [10]LIU Hongjun, TAO Xiaxin. Consolidation settlement characteristics of soft foundation in seasonal frozen swamp regions[J]. Chinese Journal of Geotechnical Engineering, 2009, 31(9): 1354-1360.
  • Cited by

    Periodical cited type(22)

    1. 黄飞虎,裴彦飞,苏谦,王鑫,杨鸿麟,李艳东. 螺旋钢桩加固边坡抗滑承载特性研究. 铁道科学与工程学报. 2024(02): 578-590 .
    2. 李绪勇,杨忠平,刘纲,李勇华,张益铭. 隔离式螺旋桩抗压承载与抗地基冻融特性. 岩土工程学报. 2024(06): 1187-1196 . 本站查看
    3. 车松阳,裴碧莹,徐洪俊. 螺旋桩室内模型试验设计及结果分析. 科技创新与应用. 2024(17): 68-71 .
    4. 周亚龙,王旭,蒋代军,刘德仁,何菲,晏昌,牛富俊. 青藏铁路接触网异型桩基抗冻拔模型试验研究. 西南交通大学学报. 2024(03): 677-684 .
    5. 孙铁成,杨逸,杨茜,董创奇. 开敞系统中冻土-混凝土界面抗拉强度试验研究. 石家庄铁道大学学报(自然科学版). 2024(02): 92-98 .
    6. 郝冬雪,王磊,陈榕,莫凯强,孔纲强,高宇聪. 冻融循环下粉砂中螺旋锚抗拔稳定模型试验研究. 岩土工程学报. 2023(01): 57-65 . 本站查看
    7. 陈强,李驰,高利平. 基于图像处理技术水分迁移对光伏桩冻拔稳定性影响的试验研究. 太阳能学报. 2023(01): 49-54 .
    8. 田天伦,苏安双,贾青,王淼. 光伏螺旋桩基抗冻拔数值模拟. 水利科学与寒区工程. 2023(03): 1-6 .
    9. 吴炅,陈鹏飞,尹啸笛,郝洪策,梁成军. 桩体结构参数对螺旋桩-土冻胀性能的影响. 河南科学. 2023(07): 964-969 .
    10. 张学礼,崔强,张树林. 冻土地基中锥管板条装配式基础抗拔承载性能试验研究. 地质科技通报. 2022(02): 335-342 .
    11. 熊维林,葛洪林,富海鹰. 考虑非对称冻结的塔杆基础模型实验研究. 铁道科学与工程学报. 2022(04): 931-940 .
    12. 王卫东,崔强,韩杨春,张树林,孟宪乔. 高寒地区输电线路锥管板条装配式基础抗冻拔性能试验研究. 防灾减灾工程学报. 2022(03): 542-552 .
    13. 王超哲,吴进,王立兴,刘浩,杨紫健,吴文兵. 黏弹性地基中螺旋桩水平动力特性. 中南大学学报(自然科学版). 2022(06): 2279-2289 .
    14. 杨朝旭,任刚,殷卫永,韩战涛,任文博,李佳佳. 钢管螺旋桩防护公路膨胀土高边坡工程应用. 公路. 2022(07): 41-48 .
    15. 陈明伟,陈航杰. 桩型对冻土桩基冻胀特性的影响研究. 甘肃科技. 2022(09): 8-12 .
    16. 黄旭斌,盛煜,黄龙,彭尔兴,曹伟,张玺彦,何彬彬. 单向冻结条件下扩底桩抗冻拔能力试验研究. 工程科学与技术. 2021(01): 122-131 .
    17. 屈讼昭,郭咏华,王仪,张斌,张建明,孙清. 大锚片螺旋锚在粉质黏土中的下压承载性能. 土木与环境工程学报(中英文). 2021(05): 34-44 .
    18. 高晓静,孙铁成,李晓康,廖一鸣. 冻结作用下粉土-混凝土接触面抗拉强度试验研究. 冰川冻土. 2020(02): 499-507 .
    19. 黄旭斌,盛煜,黄龙,何彬彬,张玺彦. 季节冻土区扩底单桩受力性能研究进展与展望. 冰川冻土. 2020(04): 1220-1228 .
    20. 王希云,邵康,苏谦,刘凯文,邹婷. 单叶片螺旋钢桩竖向承载特性数值分析. 铁道标准设计. 2019(07): 66-71 .
    21. 王希云. 螺旋钢桩设计参数对抗压承载性能的影响研究. 路基工程. 2019(03): 57-61 .
    22. 邵康,苏谦,刘凯文,李婷,周珩. 竖向受压下考虑安装扰动螺旋钢桩数值模拟分析与现场载荷试验. 岩石力学与工程学报. 2019(12): 2570-2581 .

    Other cited types(21)

Catalog

    Article views (435) PDF downloads (467) Cited by(43)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return