• 全国中文核心期刊
  • 中国科技核心期刊
  • 美国工程索引(EI)收录期刊
  • Scopus数据库收录期刊

短加筋土挡墙墙后连接作用的离心模型试验研究

徐超, 罗玉珊, 贾斌, 陈洪帅

徐超, 罗玉珊, 贾斌, 陈洪帅. 短加筋土挡墙墙后连接作用的离心模型试验研究[J]. 岩土工程学报, 2016, 38(1): 180-186. DOI: 10.11779/CJGE201601020
引用本文: 徐超, 罗玉珊, 贾斌, 陈洪帅. 短加筋土挡墙墙后连接作用的离心模型试验研究[J]. 岩土工程学报, 2016, 38(1): 180-186. DOI: 10.11779/CJGE201601020
XU Chao, LUO Yu-shan, JIA Bin, CHEN Hong-shuai. Effects of connection forms on shored mechanically stabilized earth walls by centrifugal model tests[J]. Chinese Journal of Geotechnical Engineering, 2016, 38(1): 180-186. DOI: 10.11779/CJGE201601020
Citation: XU Chao, LUO Yu-shan, JIA Bin, CHEN Hong-shuai. Effects of connection forms on shored mechanically stabilized earth walls by centrifugal model tests[J]. Chinese Journal of Geotechnical Engineering, 2016, 38(1): 180-186. DOI: 10.11779/CJGE201601020

短加筋土挡墙墙后连接作用的离心模型试验研究  English Version

基金项目: 湖北省交通科学研究计划项目(2011-700-3-42)
详细信息
    作者简介:

    徐 超(1965- ),男,博士,教授,博士生导师,主要从事土工合成材料和地基加固方面的教学与科研工作。

Effects of connection forms on shored mechanically stabilized earth walls by centrifugal model tests

  • 摘要: 短加筋土挡墙是一种在既有稳定墙体/陡坡前修建的短加筋土挡墙,但目前缺乏对短加筋土挡墙与稳定墙体/陡坡间连接形式及其作用的统一认识,对其工作机理的研究也有待深入。利用离心模型试验,结合系统的监测数据,对不同连接形式的模型墙顶沉降、墙面水平位移、土压力分布等规律进行了分析,探讨了短加筋土挡墙的行为特征以及墙后机械连接的作用。研究发现:短加筋土挡墙的竖向沉降和水平位移均较常规加筋土挡墙大且分布不均匀,墙后连接形式对短加筋土挡墙的变形存在明显的影响;短加筋土挡墙和其后稳定墙体/陡坡之间的压力远小于理论水平土压力值,稳定墙体/陡坡与短加筋土挡墙之间仅存在接触压力;短加筋土挡墙墙后设置机械连接可以显著提高整体稳定性,减小差异沉降,控制水平变形,而不设连接时短加筋土挡墙变形较大且易于垮塌破坏。
    Abstract: The shored mechanically stabilized earth (SMSE) wall system is a kind of narrow MSE walls designed and constructed next to the existing stable walls/slopes. However, the views regarding the effects of different connection forms on SMSE wall system are not unified. The performance and mechanism of SMSE walls still need further researches. Accordingly, by using the centrifugal model tests on SMSE walls, the measured data including settlement, lateral displacement of the facing and earth pressure on the SMSE walls are analyzed. The special performance characteristics of the SMSE walls are compared with those of the conventional MSE walls, and the effects of mechanical connections on the SMSE wall system are discussed. The results indicate that the SMSE walls suffer larger and uneven deformation both on crest settlement and on lateral displacement than the converntional MSE walls, and the connection form behind the SMSE walls has obvious influence on their deformation. The meassured lateral pressure of narrow reinforced soil mass against the stable wall/slope is far below the theoretical active earth pressure, showing that there is only the contact pressure between the stable wall/slope and the SMSE wall. And mechanically connecting the SMSE wall to the stable wall/slope is an efficient measure to help control the deformation and improve the system stability, while the unconnected wall will suffer larger displacement and is prone to collapse.
  • [1] 罗志刚, 王随原, 曾 俊. 加筋土技术及加筋路基研究现状[J]. 公路交通科技, 2011(1): 1-4. (LUO Zhi-gang, WANG Sui-yuan, ZENG Jun. Situations of researches on reinforced soil techniques and roadbeds[J]. Technology of Highway and Transport, 2011(1): 1-4. (in Chinese))
    [2] 周继凯, 王荣娣. 土工格栅加筋土挡墙在重载铁路路基中的应用设计[J]. 铁路标准设计, 2004(9): 6-7. (ZHOU Ji-kai, WANG Rong-di. Application and design of geogrid reinforced walls for heavy-loaded railway roadbed[J]. Railway Standard Design, 2004(9): 6-7. (in Chinese))
    [3] MORRISON K, HARRISON F, COLLIN J, et al. FHWA-CFL/TD-06-001 Shored mechanically stabilized earth (SMSE) wall systems design guidelines[S]. 2006.
    [4] YANG K H, ZORNBERG J G, HUNG W Y, et al. Location of failure plane and design considerations for narrow geosynthetic reinforced soil wall systems[J]. Journal of Geo Engineering, 2011, 6(1): 27-40.
    [5] YANG K H, LIU C N. Finite element analysis of earth pressures for narrow retaining wall[J]. Journal of GeoEngineering. 2007, 2(2): 43-52.
    [6] YANG K H, KNISS K K, ZORNBERG J G. et al. Finite element analyses for centrifuge modeling of narrow MSE walls[C]// Proc First Pan American Geosynthetics Conference, GEOAMERICAS 2008. Cancun, 2008.
    [7] WOODRUFF R. Centrifuge modeling for MSE-shoring composite walls[D]. Boulder: University of Colorado, 2003.
    [8] LEE Y B, KO H Y, MCCARTNEY J S. Deformation response of shored MSE walls under surcharge loading in the centrifuge[J]. Geosynthetics Internaitonal, 2010, 17(6): 389-402.
    [9] LAWSON C R, YEE T W. Reinforced soil retaining walls with constrained reinforced fill zones[C]// Proceedings of Geo-Frontiers 2005 Congress. Austin, 2005.
    [10] XU C, LUO Y S, ZHU H, et al. Performance of high geosynthetic-reinforced embankments[J]. Geotechnical Special Publication, n231 GSP, 2013: 515-518.
    [11] 董 健, 张 明, 罗玉珊, 等. 山区复杂地形条件下超高土工格栅加筋土路堤的稳定性分析[J]. 长江科学院院报, 2014, 31(3): 134-138, 146. (DONG Jian, ZHANG Ming, LUO Yu-shan, et al. High geogrid reinforced embankments employed in mountainous area with complicated terrain[J]. Journal of Yangtze River Scientific Research Institute, 2014, 31(3): 134-138, 146. (in Chinese))
    [12] 苗英豪, 胡长顺. 土工格栅加筋陡边坡路堤位移特性的试验研究[J]. 中国公路学报, 2006, 19(1): 47-52, 57. (MIAO Ying-hao, HU Chang-shun. Research on displacement characteristics of geogrid reinforced embankment with steep slope[J]. China Journal of Highway and Transport, 2006, 19(1): 47-52, 57. (in Chinese))
    [13] 杨广庆, 吕 鹂, 庞 巍, 等. 返包式土工格栅加筋土高挡墙现场试验研究[J]. 岩土力学, 2008, 29(2): 517-522. (YANG Guang-qing, LÜ Li, PANG Wei, et al. Research on geogrid reinforced soil retaining wall with wrapped face by in-situ tests[J]. Rock and Soil Mechanics, 2008, 29(2): 517-522. (in Chinese))
    [14] GB/T17689—2008 土工合成材料塑料土工格栅标准[S]. 2008. (GB/T17689—2008 Geosynthetics-plastic geogrids[S]. 2008. (in Chinese))
计量
  • 文章访问数:  386
  • HTML全文浏览量:  1
  • PDF下载量:  345
  • 被引次数: 0
出版历程
  • 收稿日期:  2014-12-18
  • 发布日期:  2016-01-19

目录

    /

    返回文章
    返回