• 全国中文核心期刊
  • 中国科技核心期刊
  • 美国工程索引(EI)收录期刊
  • Scopus数据库收录期刊

黄土动力学研究进展与前缘科学问题

田文通, 孙军杰, 王兰民, 徐舜华, 刘琨, 孙昱

田文通, 孙军杰, 王兰民, 徐舜华, 刘琨, 孙昱. 黄土动力学研究进展与前缘科学问题[J]. 岩土工程学报, 2015, 37(11): 2119-2127. DOI: 10.11779/CJGE201511026
引用本文: 田文通, 孙军杰, 王兰民, 徐舜华, 刘琨, 孙昱. 黄土动力学研究进展与前缘科学问题[J]. 岩土工程学报, 2015, 37(11): 2119-2127. DOI: 10.11779/CJGE201511026
TIAN Wen-tong, SUN Jun-jie, WANG Lan-min, XU Shun-hua, LIU Kun, SUN Yu. Research progress and frontier scientific problems in loess dynamics[J]. Chinese Journal of Geotechnical Engineering, 2015, 37(11): 2119-2127. DOI: 10.11779/CJGE201511026
Citation: TIAN Wen-tong, SUN Jun-jie, WANG Lan-min, XU Shun-hua, LIU Kun, SUN Yu. Research progress and frontier scientific problems in loess dynamics[J]. Chinese Journal of Geotechnical Engineering, 2015, 37(11): 2119-2127. DOI: 10.11779/CJGE201511026

黄土动力学研究进展与前缘科学问题  English Version

基金项目: 中国地震局地震预测研究所基本科研业务费专项(2013IESLZ01); 国家自然科学基金项目(51209186); 甘肃省科技计划项目(145RJZA152 )
详细信息
    作者简介:

    田文通(1977- ),男,甘肃清水人,硕士研究生,高级工程师,主要从事岩土工程和地震工程方面的研究工作。E-mail: tianwt@gssb.gov.cn。

Research progress and frontier scientific problems in loess dynamics

  • 摘要: 通过分析黄土动力学的研究进展,概括已有研究的切入点和存在的问题,结合黄土动力学向定量化和理论化发展的需求,提出关键的前缘科学问题。分析结果表明,饱和黄土液化与非饱和黄土震陷的客观存在性和危害性不容质疑;现有的相关工作,基本以动三轴试验为基础,研究切入点集中于土体物性参量、微观结构特征和动荷载类型等因素的影响分析之上,在引入黄土动力问题的物理过程和力学机制方面普遍欠缺,定量化乃至理论化仍嫌偏弱。未来的研究中,定量描述动荷载的加载效应、基于固水气微观作用的黄土动力响应机制、黄土固相动力响应与其宏观强度的定量关系、地震与降雨对黄土体动力响应的耦合影响、黄土体动力灾害风险的概率性评价等,应是值得关注的科学问题。
    Abstract: The research progress of loess dynamics, the train of their thoughts and the deficiency of the existing results are summarized. Based on the relative requirements of quantification and theorization of loess dynamics, the frontier scientific problems in researches on loess dynamics in the future are put forward. The results show that the reality of saturated-loess liquefaction and unsaturated-loess seismic subsidence is not doubtful. For the existing researches, the dynamic triaxial test in laboratory is the main approach to investigate loess dynamics. Based on the laboratory data, more attention is paid to influences of three aspects, i.e., physical properties of loess, microstructural characteristics of soil, and types of dynamic loadings. Almost all researches fail to consider the physical process and mechanical mechanism of dynamic behaviors of loess, and thus both the quantification and the theorization are relatively weak. According to the review and analysis, it is believed that the future frontier scientific problems in loess dynamics should include five aspects: quantitative description of loading effect caused by ground motion on loess, dynamic responding mechanism of loess based on micro interaction of three phases of solid, water and air, quantitative relationship between dynamic response of solid-phase and macro structure strength of loess, coupling influence of earthquake and rainfall on dynamic responding of loess mass, and probability-based assessment of dynamic hazard risk of loess mass.
  • [1] 王兰民, 石玉成, 刘 旭, 等. 黄土动力学[M]. 北京: 地震出版社, 2003: 1-181. (WANG Lan-min, SHI Yu-cheng, LIU Xu, et al. Loess dynamics[M]. Beijing: Earthquake Press, 2003: 1-181. (in Chinese))
    [2] 王兰民, 孙军杰. 黄土高原城镇建设中的地震安全问题[J]. 地震工程与工程振动, 2014, 34(4): 115-122. (WANG Lan-min, SUN Jun-jie. Seismic safety issues in the process of urban development in Loess Plateau[J]. Earthquake Engineering and Engineering Dynamics, 2014, 34(4): 115-122. (in Chinese))
    [3] 张振中, 段汝文. 黄土震陷研究与震害[J]. 西北地震学报, 1987, 9(增刊): 63-69. (ZHANG Zhen-zhong, DUAN Ru-wen. Study on seismic subsidence and seismic hazards of loess[J]. Northwest Seismological Journal, 1987, 9(S0): 63-69. (in Chinese))
    [4] 张振中, 张冬丽, 刘红玫. 黄土震陷灾害典型震例的综合研究[J]. 西北地震学报, 2005, 27(1): 36-41. (ZHANG Zhen-zhong, ZHANG Dong-li, LIU Hong-mei. Comprehensive study on seismic subsidence of loess under earthquake[J]. Northwest Seismological Journal, 2005, 27(1): 36-41. (in Chinese))
    [5] 王兰民, 孙军杰, 徐舜华, 等. 爆破模拟地震动条件下黄土场地震陷研究[J]. 岩石力学与工程学报, 2008, 27(5): 913-921. (WANG Lan-min, SUN Jun-jie, XU Shun-hua, et al. Characteristics of seismic subsidence of loess site induced by blasting ground motion[J]. Chinese Journal of Rock Mechanics and Engineering, 2008, 27(5): 913-921. (in Chinese))
    [6] 汪国烈. 对湿陷性黄土场地地震作用工程影响的几点看法[J]. 西北地震学报, 2007, 29(1): 96-98. (WANG Guo-lie. Some opinions on effect of engineering under earthquake action in site of collapsible loess[J]. Northwestern Seismological Journal, 2007, 29(1): 96-98. (in Chinese))
    [7] PRAKASH S, PURI V K. Liquefaction of loessial soils[C]// Anon. Proc. The Third International Conference on Seismic Microzonation, Seattle, Wash. (Vol. Ⅱ). [s. l.]: [s. n.], 1982: 1101-1107.
    [8] ISHIHARA K, OKUSA S, OYAGI N, et al. Liquefaction-induced flow slide in the collapsible loess deposit in soviet Tajik[J]. Soils and Foundations, 1990, 30(4): 73-89.
    [9] 白铭学, 张苏民. 高烈度地震时黄土地层的液化移动[J]. 工程勘察, 1990(6): 1-5. (BAI Ming-xue, ZHANG Su-min, Liquefied mobile of Loess strata during High intensity earthquake[J]. Geotechnical Investigation & Surveying, 1990(6): 1-5. (in Chinese))
    [10] SEED H B. Landslides during earthquake due to soil liquefaction[J]. Journal Soil Mechanics Foundations Division, ASCE, 1968, 94(5): 1055-1122.
    [11] 徐舜华, 吴志坚, 孙军杰, 等. 岷县漳县6.6级地震典型滑坡特征及其诱发机制[J]. 地震工程学报, 2013, 35(3): 471-476. (XU Shun-hua, WU Zhi-jian, SUN Jun-jie, et al. Study of the Characteristics and Inducing Mechanism of Typical Earthquake Landslides of the Minxian-Zhangxian Ms6.6 Earthquake[J]. China Earthquake Engineering Journal, 2013, 35(3): 471-476. (in Chinese))
    [12] 孙军杰, 王兰民, 龙鹏伟, 等. 地震与降雨耦合作用下区域滑坡灾害评价方法[J]. 岩石力学与工程学报, 2011, 30(4): 752-760. (SUN Jun-jie, WANG Lan-min, LONG Peng-wei, et al. An assessment method for regional susceptibility of landslides under coupling condition of earthquake and rainfall[J]. Chinese Journal of Rock and Mechanics and Engineering, 2011, 30(4): 752-760. (in Chinese))
    [13] 李启鹞, 呈显瑶, 蔡东艳. 地震荷载下黄土的动力特性[J].西安冶金建筑学院学报, 1985, 43(3): 9-37. (LI Qi-yao, CHENG Xian-yao, CAI Dong-yan. Dynamic characteristic of loess under seismic load[J]. Journal of Xi'an Institute of Metallurgical and Construction Engineering, 1985, 43(3): 9-37. (in Chinese))
    [14] 何 光, 朱鸿博. 黄土震陷研究[J]. 岩土工程学报, 1990, 12(5): 99-103. (HE Guang, ZHU Hong-bo. Study on loess seismic subsidence[J]. Chinese Journal of Geotechnical Engineering, 1990, 12(6): 99-103. (in Chinese))
    [15] 王兰民, 袁中夏. 干密度对击实黄土震陷性影响的试验研究[J]. 地震工程与工程振动, 2000, 20(1): 75-80. (WANG Lan-min, YUAN Zhong-xia. Laboratory study of effect of dry density on seismic settlement of compacted loess[J]. Earthquake Engineering And Engineering Vibration, 2000, 20(1): 75-80. (in Chinese))
    [16] 徐舜华, 王兰民. 黄土震陷初判指标的界定研究[J]. 西北地震学报, 2006, 28(2): 140-143. (XU Shun-hua, WANG Lan-min. Study on initial judging criterions of loess seismic subsidence[J]. Northwest Seismological Journal, 2006, 28(2): 140-143. (in Chinese))
    [17] 陈永明, 王兰民, 刘红玫. 剪切波速预测黄土场地震陷量的方法[J]. 岩石力学与工程学报, 2003, 22(增刊2): 2834-2839. (CHEN Yong-ming, WANG Lan-min, LIU Hong-mei. Prediction method of seismic of subsidence of loose ground with shear wave velocity[J]. Chinese Journal of Rock Mechanics and Engineering, 2003, 22(S2): 2834-2839. (in Chinese))
    [18] 王兰民, 张振中. 地震时黄土振陷量的估算方法[J]. 自然灾害学报, 1993, 2(3): 85-94. (WANG Lan-min, ZHANG Zhen-zhong. A method of estimating the quantity of seismic subsidence in loess deposits during earthquakes[J]. Journal of Natural Disasters, 1993, 2(3): 85-94. (in Chinese))
    [19] ISHIHARA K, KOYAMACHI N, KASUDA K. Strength of a cohesive soil in irregular loading[C]// Proc 8WCEE, 1984: 7-14.
    [20] 王兰民, 张振中, 王 峻, 等. 随机地震荷载作用下黄土动强度的试验方法[J]. 西北地震学报, 1991, 13(3): 50-55. (WANG Lan-min, ZHANG Zhen-zhong, WANG Jun, et al. A test method of dynamic strength of loess under random seismic loading[J]. Northwest Seismological Journal, 1991, 13(3): 50-55. (in Chinese))
    [21] 王 峻, 石玉成, 王杰民, 等. 不同地震荷载作用下黄土震陷特性的对比分析[J]. 岩土工程学报, 2011, 33(增刊1): 102-106. (WANG Jun, SHI Yu-cheng, WANG Jie-min, et al. Comparative analysis of characters of loess subsidence under different seismic load[J]. Chinese Journal of Geotechnical Engineering, 2011, 33(S1): 102-106. (in Chinese))
    [22] 邓龙胜, 范 文. 随机地震荷载作用下黄土震陷的影响因素研究[J]. 岩石力学与工程学报, 2011, 30(9): 1924-1931. (DENG Long-sheng, FAN Wen. Study of influencing factors of loess seismic subsidence induced by stochastic seismic load[J]. Chinese Journal of Rock Mechanics and Engineering, 2011, 30(9): 1924-1931. (in Chinese))
    [23] 沈珠江. 土体结构性的数学模型——21世纪土力学的核心问题[J]. 岩土工程学报, 1996, 18(1): 95-97. (SHEN Zhu-jiang. Structural mathematics model of soil. The central problem of soil mechanics in 21th century[J]. Chinese Journal of Geotechnical Engineering. 1996, 18(1): 95-97. (in Chinese))
    [24] 高国瑞. 黄土显微结构分类与湿陷性[J]. 中国科学: A 辑, 1980, 23(12): 1203-1208. (GAO Guo-rui. Microstructure of loess in China[J]. Science in China: Series A, 1980, 23(12): 1203-1208. (in Chinese))
    [25] 王兰民, 邓 津, 黄 媛. 黄土震陷性的微观结构量化分析[J]. 岩石力学与工程学报, 2007, 26(增刊1): 3025-3031. (WANG Lan-min, DENG Jin, HUANG Yuan. Quantitative analysis of microstructure of loess seismic subsidence[J]. Chinese Journal of Rock Mechanics and Engineering, 2007, 26(S1): 3025-3031. (in Chinese))
    [26] 石玉成, 裘国荣. 基于微结构的黄土震陷本构关系研究[J].岩土工程学报, 2011, 33(增刊1): 7-12. (SHI Yu-cheng, QIU Guo-rong. Constitutive relation of seismic subsidence of loess based on microstructure[J]. Chinese Journal of Geotechnical Engineering, 2011, 33(S1): 7-12. (in Chinese))
    [27] 谷天峰, 王家鼎, 郭 乐, 等. 基于图像处理的Q 3 黄土的微观结构变化研究[J]. 岩石力学与工程学报, 2011, 30(增1): 3185-3192. (GU Tian-feng, WANG Jia-ding, Guo Le, et al. Study of Q 3 loess microstructure changes based on image processing[J]. Chinese Journal of Rock Mechanics and Engineering, 2011, 30(S1): 3185-3192. (in Chinese))
    [28] 裘国荣, 石玉成, 刘红玫. 黄土震陷时微观结构随动应力变化分析[J]. 西北地震学报, 2010, 32(1): 42-46. (QIU Guo-rong, SHI Yu-cheng, LIU Hong-mei. Analysis on microstructural variety in seismic subsidence of loess with dynamic stress[J]. Northwestern Seismological Journal, 2010, 32(1): 42-46. (in Chinese))
    [29] 邓 津, 王兰民, 张振中. 黄土显微结构特征与震陷性[J]. 岩土工程学报, 2007, 29(4): 542-548. (DENG Jin, WANG Lan-min, ZHANG Zhen-zhong. Microstructure characteristics and seismic subsidence of loess[J]. Chinese Journal of Geotechnical Engineering, 2007, 29(4): 542-548. (in Chinese))
    [30] 张冬丽, 王兰民, 王玉华, 等. 有限元分析方法在黄土地基震陷预测中的应用[J]. 西北地震学报, 2002, 24(3): 208-214. (ZHANG Dong-li, WANG Lan-min, WANG Yu-hua. Application of FEM to prediction of seismic subsidence of loess ground[J]. Northwestern Seismological Journal, 2002, 24(3): 208-214. (in Chinese))
    [31] 孙军杰, 徐舜华, 王兰民, 等. 非饱和黄土动残余应变关键影响参量与量值估算[J].岩石力学与工程学报, 2012, 31(2): 382-391. (SUN Jun-jie, XU Shun-hua, WANG Lan-min, et al. Critical influence parameters and magnitude estimation of dynamic residual strain of unsaturated loess[J]. Chinese Journal of Rock Mechanics and Engineering, 2012, 31(2): 382-391. (in Chinese))
    [32] 孙军杰, 王兰民, 秋仁东, 等. 基于物理力学机制的黄土震陷数学估算模型[J]. 工程力学, 2012, 29(5): 53-60. (SUN Jun-jie, WANG Lan-min, QIU Ren-dong, et al. A mathematical estimation model for seismic subsidence of loess based on physical-mechanical mechanism[J]. Engineering Mechanics, 2012, 29(5): 53-60. (in Chinese))
    [33] PURI V K. Liquefactzon behauzor and dynamic properties of loessial (Silty) soils[D]. Missouri: University of Missouri-Rolla, 1984.
    [34] PRAKASH S, GUO T, KUMAR S. Liquefaction of silts and silt-clay mixtures[C]// Anon Geotechnical Earthguake Engineering and Soil Dynamics Ⅲ. Londong: Elsevier, 1998: 337-348.
    [35] WANG L M, ZHANG Z Z, LI Lan, et al. Laboratory study on loess liquefaction[C]// Anon Proc Eleventh World Conference on Earthquake Engineering (Vol. 3). Acapulco, Mexico, London: Elsevier, 1996.
    [36] HWANG H, WANG L M, YUAN Z X. Comparison in liquefaction potential of Loess between Lanzhou, China and Memphis, USA[C]// Anon Proc The 9th International Conference on Soil Dynamics and Earthquake Engineering. Noway, London: Elsevier, 1999.
    [37] 王兰民, 刘红玫, 李 兰, 等. 饱和黄土液化机理与特性的试验研究[J]. 岩土工程学报, 2000, 22(1): 89-94. (WANG Lan-min, LIU Hong-mei, LI Lan, el at. Laboratory study on the mechanism and behaviors of saturated loess liquefaction[J]. Chinese Journal of Geotechnical Engineering, 2000, 22(1): 89-94. (in Chinese))
    [38] 石兆吉, 王兰民. 土壤动力特性-液化势及危害性评价[M]. 北京: 地震出版社, 1999. (SHI Zhao-ji, WANG Lan-min. The dynamic characteristics of soil liquefaction potential assessment[M]. Beijing: Earthquake Press, 2003. (in Chinese))
    [39] 杨振茂, 赵成刚, 王兰民. 黄土与砂土液化特性的对比-土液化与防灾减灾[J]. 中国安全科学学报, 2004, 14(11): 3-7. (YANG Zhen-mao, ZHAO Cheng-gang, WANG Lan-min. Comparison on liquefaction performance between loess and sand-Soil liquefaction and prevention of seismic disaster[J]. China Safety Science Journal, 2004, 14(11): 3-7. (in Chinese))
    [40] 余跃心, 刘汉龙, 高玉峰. 饱和黄土孔压增长模式与液化机制的试验研究[J].岩土力学, 2002, 23(4): 395-399. (SHE Yue-xin, LIU Han-long, GAO Yu-feng. Study on liquefaction mechanism and pore water pressure mode of saturated original loessf[J]. Rock and Soil Mechanics, 2002, 23(4): 395-399. (in Chinese))
    [41] WANG L M, HE K M, SHI Y C, et al. Study on liquefaction of saturated loess by in-situ explosion test[J]. Earthquake Engineering and Engineering Vibration, 2002, 1(1): 50-56.
    [42] 张振中. 黄土地震灾害预测[M]. 北京: 地震出版社, 1999. (ZHANG Zhen-zhong. Earthquake induced hazards forecast in loess area[M]. Beijing: Earthquake Press, 1999. (in Chinese))
    [43] 邓龙胜, 范 文. 宁夏海原8.5级地震诱发黄土滑坡的变形破坏特征和发育机理[J]. 灾害学, 2013, 28(3): 30-37. (DENG Long-sheng, FAN Wen. Deformation breakage characteristics and development mechanism of loess landslide triggered by Haiyuan M 8.5 earthquake in Ningxia[J]. Journal of Catastrothology, 2013, 28(3): 30-37. (in Chinese))
    [44] SASAA K. The mechanism starting liquefied landslides and debris flows[C]// Proceeding of 4th International Symposium Landslide. Toronto, 1984: 349-354.
    [45] SASAA K. The mechanism of debris flows[C]// Proceeding of 11th International Conference on Soil Mechanics and Foundation Engineering. San Francisco, 1985: 1173-1176.
    [46] WANG Lan-min. Analysis of loess seismic landslides under irregular seismic loading[C]// Proceeding of the First International Conference on Seismology and Earthquake Engineering. Tehran, 1991(1): 511-518.
    [47] 王家鼎, 刘 悦. 高速黄土滑坡、蠕滑动液化机理的进一步研究[J]. 西北大学学报 (自然科学版), 1999, 29(1): 79-82. (WANG Jia-ding, LIU Yue. A further study on the mechanism of high-speed loess landslide in state of creeping land sliding liquefaction[J]. Journal of Northwest University (Natural Science Edition), 1999, 29(1): 79-82. (in Chinese))
    [48] FREDLUND D G, RAHARDJO H. 非饱和土力学[M]. 陈仲颐, 张在明, 译. 北京: 中国建筑工业出版社, 1997. (FREDLUND D G, RAHARDJO H. Soil mechanics for unsaturated soils[M]. CHEN Zhong-yi, ZHANG Zai-ming, trans. Beijing: China Architecture and Building Press, 1997. (in Chinese))
    [49] 谢定义. 试论我国黄土力学研究中的若干新趋向[J]. 岩土工程学报, 2001, 23(1): 3-13. (XIE Ding-yi. Exploration of some new tendencies in research of loess soil mechanics[J]. Chinese Journal of Geotechnical Engineering, 2001, 23(1): 3-13. (in Chinese))
    [50] 沈珠江. 现代土力学的基本问题[J]. 力学与实践, 1998, 20(6): 1-6. (SHEN Zhu-jiang. Foundamental problems in the modern soil mechanics[J]. Mechanics and Practices, 1998, 20(6): 1-6. (in Chinese))
    [51] 孙军杰, 田文通, 徐舜华, 等. 概率性分析在黄土场地动力沉降评价中的应用[J]. 岩土力学, 2013, 34(8): 2158-2165, 2173. (SUN Jun-jie, TIAN Wen-tong, XU Shun-hua, et al. Application of probability analysis method to quantitative evaluation of dynamic settlements of natural loess field[J]. Rock and Mechanics, 2013, 34(8): 2158-2165, 2173. (in Chinese))
    [52] HOULSBY G T. The work input to an unsaturated granular material[J]. Géotechnique, 1997, 47(1): 193-196.
    [53] JOMMI C. Remark on the constitutive modeling of unsaturated soil[C]// Experimental Evidence and Theoretical Approaches in Unsaturated Soils. Proc of an International Workshop. Trento, 2000.
    [54] VAUNAT J, ROMERO E, JOMMI C. An elastoplastic hydro-Mechanical model for unsaturated soils[C]// Experimental Evidence and Theoretical Approaches in Unsaturated Soils, Proc. of an International Workshop. Trento, 2000.
    [55] ZHAO C G, LIU Y. Work and energy and the principle of generalized effective stress for unsaturated soils[J]. International Journal for Numerical and Analytical Methods In Geomechanics, 2010, 34(6): 920-936.
    [56] 沈珠江. 非饱和土力学实用化之路探索[J]. 岩土工程学报, 2006, 28(2): 256-259. (SHEN Zhu-jiang. Exploitation of practical use of unsaturated soil mechanics[J]. Chinese Journal of Geotechnical Engineering, 2006, 28(2): 256-259. (in Chinese))
  • 期刊类型引用(16)

    1. 加瑞,楚振兴. 地质聚合物加固软土的研究现状与进展. 硅酸盐通报. 2025(02): 490-500 . 百度学术
    2. 马丽媛,李滢,陈曦. 再生微粉和矿物掺合料对水泥浆体微观结构的影响研究. 青海大学学报. 2024(01): 24-31 . 百度学术
    3. 谷雷雷,张梅,邓先军,吉久发,于剑波,王盛年. 水泥复合偏高岭土稳定粉砂土力学特性试验研究. 地质与勘探. 2024(01): 148-155 . 百度学术
    4. 王志良,陈玉龙,申林方,施辉盟. 偏高岭土基地聚合物对水泥固化红黏土的改善机制. 材料导报. 2024(08): 141-147 . 百度学术
    5. 黎宇,胡明鉴,郑思维,王志兵. 电石渣-矿渣固化膨胀土强度及微观机制研究. 岩土力学. 2024(S1): 461-470 . 百度学术
    6. 胡家宇,徐菲,钱文勋,肖怀前,葛津宇,李嘉明. 涂覆时间对聚合物水泥基钢筋涂层粘接性能的影响机理. 材料导报. 2024(17): 127-130 . 百度学术
    7. 韩瑞凯,陈宇鑫,张健,李召峰,王衍升. 养护温度对赤泥基路用胶凝材料性能及微观结构的影响. 材料导报. 2024(22): 27-34 . 百度学术
    8. 何俊,管家贤,吕晓龙,张驰. 纳米硅粉改良碱渣-矿渣固化淤泥的抗硫酸镁侵蚀性能. 硅酸盐通报. 2023(04): 1344-1352 . 百度学术
    9. 胡鑫,孙强,晏长根,赵春虎,王少飞. 陕北烧变岩水-岩作用的劣化特性. 煤田地质与勘探. 2023(04): 76-84 . 百度学术
    10. 何俊,管家贤,龙思昊. MgSO_4硅粉改良固化淤泥的渗透性能及孔隙特征. 水利水电技术(中英文). 2023(07): 218-226 . 百度学术
    11. 李丽华,韩琦培,杨星,肖衡林,李文涛,黄少平. 稻壳灰-水泥固化淤泥土力学特性及微观机理研究. 土木工程学报. 2023(12): 166-176 . 百度学术
    12. 王伟,刘静静,李娜,马露. 纳米SiO_2改性滨海水泥土的短龄期力学性能与微观机制. 复合材料学报. 2022(04): 1701-1714 . 百度学术
    13. 黄毫春,昌郑,吴春鹏,姚嘉敏,熊勃,刘飞禹. 纤维长度与掺量对加筋水泥土直剪特性的影响研究. 施工技术(中英文). 2022(21): 54-59 . 百度学术
    14. 王盛年,高新群,吴志坚,惠洪雷,张兴瑾. 水泥偏高岭土复合稳定粉砂土渗透特性试验研究. 岩土力学. 2022(11): 3003-3014 . 百度学术
    15. 李晓丽,赵晓泽,申向东. 碱激发对砒砂岩地聚物水泥复合土强度及微观结构的影响机理. 农业工程学报. 2021(12): 73-81 . 百度学术
    16. 徐长文,阮波. 冻融循环下纤维水泥改良风积沙NMR试验研究. 铁道科学与工程学报. 2021(09): 2289-2298 . 百度学术

    其他类型引用(19)

计量
  • 文章访问数:  422
  • HTML全文浏览量:  3
  • PDF下载量:  373
  • 被引次数: 35
出版历程
  • 收稿日期:  2014-09-07
  • 发布日期:  2015-11-19

目录

    /

    返回文章
    返回