• 全国中文核心期刊
  • 中国科技核心期刊
  • 美国工程索引(EI)收录期刊
  • Scopus数据库收录期刊

双轴压缩条件下散粒体的二维孔隙分布及演化规律研究

刘洋, 汪成林, 张铎

刘洋, 汪成林, 张铎. 双轴压缩条件下散粒体的二维孔隙分布及演化规律研究[J]. 岩土工程学报, 2015, 37(3): 494-503. DOI: 10.11779/CJGE201503013
引用本文: 刘洋, 汪成林, 张铎. 双轴压缩条件下散粒体的二维孔隙分布及演化规律研究[J]. 岩土工程学报, 2015, 37(3): 494-503. DOI: 10.11779/CJGE201503013
LIU Yang, WANG Cheng-lin, ZHANG Duo. Distribution and evolution of pore structure in 2D granular materials under biaxial compression[J]. Chinese Journal of Geotechnical Engineering, 2015, 37(3): 494-503. DOI: 10.11779/CJGE201503013
Citation: LIU Yang, WANG Cheng-lin, ZHANG Duo. Distribution and evolution of pore structure in 2D granular materials under biaxial compression[J]. Chinese Journal of Geotechnical Engineering, 2015, 37(3): 494-503. DOI: 10.11779/CJGE201503013

双轴压缩条件下散粒体的二维孔隙分布及演化规律研究  English Version

基金项目: 国家自然科学基金项目(51178044); 新世纪优秀人才资助项目(NCET-11-0579); 北京市高校青年英才资助项目(YETP0340)
详细信息
    作者简介:

    刘 洋(1979- ),男,江苏徐州人,博士,副教授,主要从事土细观力学和砂土液化方面的研究与教学工作。E-mail: ly-ocean@sohu.com。

  • 中图分类号: TU44

Distribution and evolution of pore structure in 2D granular materials under biaxial compression

  • 摘要: 基于离散单元法建立了不同密实度的理想散粒体数值模型,通过Voronoi-Delaunay网格剖分建立离散域,采用基于边界点的椭圆拟合算法模拟散粒体中的孔隙,并进一步分析了在双轴压缩条件下散粒体孔隙的分布特征与演化规律,同时结合数值试样中单孔隙的变化过程,分析了散粒体变形的微细观力学机理。研究表明,散粒体二维孔隙表现出明显的双峰分布特征,在双轴压缩条件下,不同密实度散粒体的孔隙要素表现出明显不同的演化特征。总体说来,松散试样小孔隙比例增加,大孔隙比例减少,孔隙趋于均匀;而密实试样小孔隙比例减少,大孔隙比例增加。孔隙的排列方向与荷载主方向有关,初始密实度对其影响不大。双轴加载过程中长轴沿水平方向的细长孔隙首先崩溃,长轴沿轴向加载方向的孔隙存留下来并在散粒体变形过程中起主导作用,最终沿加载方向产生一个稳定的颗粒结构。单孔隙的发展过程显示,大孔隙上承担着较强的力链,双轴压缩过程中随着变形的发展,松散试样中接触力链较强的单个大孔隙逐渐分裂成为多个小孔隙,颗粒接触力链分布趋于均匀;而在密实试样中,随着变形发展小孔隙逐渐融合形成大孔隙。
    Abstract: The numerical models for ideal granular with different densities are established using the discrete element method to examine the distribution and evolution of pore structure in 2D granular materials under biaxial compression. The voronoi-Delaunay tessellations are adopted to divide the space into Voronoi regions and the irregularly shaped pore geometry is quantified with a best-fitting ellipse with the aid of the boundary-based method. The micro-mechanism of deformation of granular materials is analyzed according to the evolution of representative single pore. It is found that the pore-size distribution of numerical specimens exhibits a bimodal nature with two peaks occurring at certain pore radius. The pores in samples with different densities show different evolution rules with the increasing strain. The proportion of fine pore increases and that of the macro pore decreases in the loose samples. The evolution of pore structure in dense samples shows exactly the opposite evolution trend. The orientation of the pores is associated with loading direction and the initial density has little effect on it. The pores with long semi-axis along the horizontal direction collapse first, while the pores with long axis direction along the axial loading survive. Thus a more stable particle structure is created. The evolution of single pore structure indicates that strong force chain acts on macro pores. With the deformation of samples, macro pores are divided into a number of fine pores due to particle motion in loose samples and the fore chain becomes more uniform throughout the samples. In dense samples, the small-size pore structures decrease and fuse together to form large ones.
  • [1] 沈珠江. 土体结构性的数学模型——21世纪土力学的核心问题[J]. 岩土工程学报, 1996, 18(1): 95-97. (SHEN Zhu-jiang. Mathematical model of soil structural property kernel problem of soil mechanics in 21CN[J]. Chinese Journal of Geotechnical Engineering, 1996, 18(1): 95-97. (in Chinese))
    [2] BREWER R. Fabric and mineral analysis of soils[M]. New York: Wiley, 1964.
    [3] ODA M. Initial fabrics and their relations to mechanical properties of granular materials[J]. Soils and Foundations, 1972, 12(1): 17-36.
    [4] TOVEY N K, KRINSLEY D H. Mapping of the orientation of fine-grained minerals in soils and sediments[J]. Bulletin of Engineering Geology and the Environment, 1992, 46(1): 93-101.
    [5] 张 宏, 柳艳华, 杜东菊. 基于孔隙特征的天津滨海软黏土微观结构研究[J]. 同济大学学报(自然科学版), 2010, 38(10): 1444-1449. (ZHANG Hong, LIU Yan-hua, DU Dong-ju. Microstructure research based on pore characteristic of soft clay in Tianjin Binhai New District[J]. Journal of Tongji University (Natural Science), 2010, 38(10): 1444-1449. (in Chinese))
    [6] TYLER S W, WHEATCRAFT S W. Fractal scaling of soil particle -size distribution analysis and limitations[J]. Soil Science Society of America Journal, 1992, 56(2): 362-369.
    [7] MCBRATHNEY A B. Comments on “fractal distribution of soil aggregate size distribution calculated number and mass”[J]. Soil Science Society of America Journal, 1993, 57(5): 1393-1393.
    [8] KOZAK E, PACHEP SKY Y A. A modified number-based method for estimating fragmentation fractal dimensions of soils[J]. Soil Science Society of America Journal, 1996, 60(5): 1292-1297.
    [9] 毛灵涛, 薛 茹, 安里千, 等. 软土孔隙微观结构的分形研究[J]. 中国矿业大学学报, 2005, 34(5): 600-604. (MAO Ling-tao, XUE Ru, AN Qian-li, et al. Fractal Approach on Soft Soil Porosity Microstructure[J]. Journal of China University of Mining & Technology, 2005, 34(5): 600-604. (in Chinese))
    [10] LAPIERRE C, LEROUEIL S, LOCAT J. Mercury intrusion and permeability of Louiseville clay[J]. Canadian Geotechnical Journal, 1990, 27(6): 761-773.
    [11] TANAKA H, SHIWAKOTI D R, OMUKAIN N, et al. Pore size distribution of clayey soils measured by mercury intrusion porosimetry and its relation to hydraulic conductivity[J]. Soils and Foundations, 2003, 43(6): 63-73.
    [12] NINJGARAV E, CHUNG S G, JANG W Y, et al. Pore size distribution of Pusan clay measured by mercury intrusion porosimetry[J]. KSCE Journal of Civil Engineering, 2007, 11(3): 133-139.
    [13] 江福河. 压汞法对不同深度软土固结的微观孔隙特征研究[J]. 科学技术与工程, 2011, 31(11): 7701-7706. (JIANG Fu-he. The study of micro pore characteristics on different depth soft soil consolidation by mercury intrusion porosimetry[J]. Science Technology and Engineering, 2013, 31(11): 7701-7706. (in Chinese))
    [14] DIANOND S. Pore size distributions in clays[J]. Clays and Clay Minerals, 1970, 18(1): 7-23.
    [15] CARY J W, HAYDEN C W. An index for soil pore size distribution[J]. Geoderma, 1973, 9(4): 249-256.
    [16] COULON E, BRUANDA A. Effects of compaction on the porespace geometry in sandy soils[J]. Soil and Tillage Research, 1989, 15(1): 137-151.
    [17] GRIFFITHS F, JOSHI R. Change in pore size distribution due to consolidation of clays[J]. Géotechnique, 1989, 39(1): 159-167.
    [18] PENUMADU D, DEAN J. Compressibility effect in evaluating the pore-size distribution of kaolin clay using mercury intrusion porosimetry[J]. Canadian Geotechnical Journal, 2000, 37(2): 393-405.
    [19] LI X, ZHANG L M. Characterization of dual-structure pore-size distribution of soil[J]. Canadian Geotechnical Journal, 2009, 46(2): 129-141.
    [20] KOLIJI A, VULLIET L, LALOUI L. Structural characterization of unsaturated aggregated soil[J]. Canadian Geotechnical Journal, 2010, 47(3): 297-311.
    [21] SIMMS P, YANGFUL E. Predicting soil-water characteristic curves of compacted plastic soils from measured pore-size distributions[J]. Géotechnique, 2002, 52(4): 269-278.
    [22] 胡 冉, 陈益峰, 周创兵, 等. 基于孔隙分布的变形土土水特征曲线模型[J]. 岩土工程学报, 2013, 35(8): 1451-1462. (HU Ran, CHEN Yi-feng, ZHOU Chuang-bing. A water retention curve model for deformable soils based on pore size distribution[J]. Chinese Journal of Geotechnical Engineering, 2013, 35(8): 1451-1462. (in Chinese))
    [23] 刘 洋, 周 健. 离散介质应变计算的非线性插值方法[J].岩土工程学报, 2006, 28(9): 1129-1133. (LIU Yang, ZHOU Jian. Nonlinear interpolation method for strain calculation in discrete media[J]. Chinese Journal of Geotechnical Engineering, 2006, 28(9): 1129-1133. (in Chinese))
    [24] LI X, LI X-S. Micro-macro quantification of the internal structure of granular materials[J]. Journal of Engineering Mechanics, ASCE, 2009, 135(7): 641-56.
    [25] NGUYEN Ngoc-Son, MAGOARIEC Hélène, CAMBOU Bernard, et al. Analysis of structure and strain at the meso-scale in 2D granular materials[J]. International Journal of Solids and Structures, 2009, 46(17): 3257-3271.
    [26] CUNDALL P A, STRACK O D L. A discrete numerical model for granular assembles[J]. Géotechnique, 1979, 29(1): 47-65.
    [27] MULCHRONE K F, COUDHURY K R. Fitting an ellipse to an arbitrary shape: implications for strain analysis[J]. Journal of Structural Geology, 2004, 26(1): 143-53.
    [28] FITZGIBBON A, PILU M, FISHER R B. Direct least square fitting of ellipses[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 1999, 21(5): 476-80.
    [29] IWASHITA K, ODA M. Micro-deformation mechanism of shear banding process based on modified distinct element method[J]. Powder Technology, 2000, 109(1/2/3): 192-205.
    [30] THORNTON C, ANTONY S J. Quasi-static shear deformation of a soft particle system[J]. Powder Technology, 2000, 109(1/2/3): 179-191.
  • 期刊类型引用(18)

    1. 宋健,潘驭航,陆朱汐,姬建,张飞,高玉峰. 考虑场地效应的多点地震动作用下边坡永久位移分析. 岩土工程学报. 2025(01): 65-75 . 本站查看
    2. 刘中宪,卢飞龙,边煜凯,黄振恩. 甘肃文县城关镇山体-沉积河谷三维地震动IBEM模拟. 防灾减灾工程学报. 2025(01): 1-12 . 百度学术
    3. 刘中宪,周涛,黄振恩,黄磊,章博峰. 基于快速边界元方法的倾滑断层近场效应和盆地聚焦效应耦合作用研究. 应用力学学报. 2024(04): 896-906 . 百度学术
    4. 陈家旺,黄博,凌道盛,王楠. SV波斜入射作用下梯形沉积河谷场地地震动分析. 地基处理. 2024(05): 434-443 . 百度学术
    5. 范观盛,黄靥欢,刘春,乐天呈. 基于MatDEM的岩石应力波传播与衰减特性敏感性分析. 高校地质学报. 2023(03): 479-486 . 百度学术
    6. 何卫平,李小军,杜修力,姚惠芹. P波入射分界面叠加区质点运动形成机制与峰值规律. 振动与冲击. 2023(18): 81-87+163 . 百度学术
    7. 蔡曼琳,丁海平,于彦彦. 圆弧形沉积谷地在平面SV波入射下地震响应的有限元分析. 世界地震工程. 2022(01): 229-240 . 百度学术
    8. Zhihui Zhu,Yongjiu Tang,Zhenning Ba,Kun Wang,Wei Gong. Seismic analysis of high-speed railway irregular bridge–track system considering V-shaped canyon effect. Railway Engineering Science. 2022(01): 57-70 . 必应学术
    9. 蔡曼琳. 圆弧形沉积谷地在平面SV波入射下地震响应. 四川建材. 2022(05): 63-64 . 百度学术
    10. 阙仁波. 对地震危险性分析的示例性探讨. 四川建筑科学研究. 2022(03): 10-19 . 百度学术
    11. 常晁瑜,薄景山,乔峰,段玉石,张毅毅. 地震动强度对黄土地震滑坡后壁形态的影响. 自然灾害学报. 2022(03): 106-115 . 百度学术
    12. Mohsen Isari,Reza Tarinejad. Introducing an effective coherence function to generate non-uniform ground motion on topographic site using time-domain boundary element method. Earthquake Engineering and Engineering Vibration. 2021(01): 89-100 . 必应学术
    13. 李郑梁,李建春,刘波,聂萌萌. 浅切割的高山峡谷复杂地形的地震动放大效应研究. 工程地质学报. 2021(01): 137-150 . 百度学术
    14. 权雪瑞,黄靥欢,刘春,郭长宝. 川藏铁路线V形深切河谷地形地震放大效应数值模拟. 现代地质. 2021(01): 38-46 . 百度学术
    15. 刘中宪,刘英,孟思博,黄磊. 基于间接边界元法的近断层沉积谷地地震动模拟. 岩土力学. 2021(04): 1141-1155+1169 . 百度学术
    16. 梁建文,吴孟桃,巴振宁. 流体饱和半空间二维地形三分量弹性波散射间接边界元模拟. 地球物理学报. 2021(08): 2766-2779 . 百度学术
    17. 邓鹏. 单体边坡地形的地震动力响应及其放大效应的数值分析. 地震学报. 2020(03): 349-361+378 . 百度学术
    18. 孔宪京,周晨光,邹德高,余翔. 高土石坝-地基动力相互作用的影响研究. 水利学报. 2019(12): 1417-1432 . 百度学术

    其他类型引用(23)

计量
  • 文章访问数: 
  • HTML全文浏览量:  0
  • PDF下载量: 
  • 被引次数: 41
出版历程
  • 收稿日期:  2014-04-14
  • 发布日期:  2015-03-23

目录

    /

    返回文章
    返回