Citation: | LIU Yang, WANG Cheng-lin, ZHANG Duo. Distribution and evolution of pore structure in 2D granular materials under biaxial compression[J]. Chinese Journal of Geotechnical Engineering, 2015, 37(3): 494-503. DOI: 10.11779/CJGE201503013 |
[1] |
沈珠江. 土体结构性的数学模型——21世纪土力学的核心问题[J]. 岩土工程学报, 1996, 18(1): 95-97. (SHEN Zhu-jiang. Mathematical model of soil structural property kernel problem of soil mechanics in 21CN[J]. Chinese Journal of Geotechnical Engineering, 1996, 18(1): 95-97. (in Chinese))
|
[2] |
BREWER R. Fabric and mineral analysis of soils[M]. New York: Wiley, 1964.
|
[3] |
ODA M. Initial fabrics and their relations to mechanical properties of granular materials[J]. Soils and Foundations, 1972, 12(1): 17-36.
|
[4] |
TOVEY N K, KRINSLEY D H. Mapping of the orientation of fine-grained minerals in soils and sediments[J]. Bulletin of Engineering Geology and the Environment, 1992, 46(1): 93-101.
|
[5] |
张 宏, 柳艳华, 杜东菊. 基于孔隙特征的天津滨海软黏土微观结构研究[J]. 同济大学学报(自然科学版), 2010, 38(10): 1444-1449. (ZHANG Hong, LIU Yan-hua, DU Dong-ju. Microstructure research based on pore characteristic of soft clay in Tianjin Binhai New District[J]. Journal of Tongji University (Natural Science), 2010, 38(10): 1444-1449. (in Chinese))
|
[6] |
TYLER S W, WHEATCRAFT S W. Fractal scaling of soil particle -size distribution analysis and limitations[J]. Soil Science Society of America Journal, 1992, 56(2): 362-369.
|
[7] |
MCBRATHNEY A B. Comments on “fractal distribution of soil aggregate size distribution calculated number and mass”[J]. Soil Science Society of America Journal, 1993, 57(5): 1393-1393.
|
[8] |
KOZAK E, PACHEP SKY Y A. A modified number-based method for estimating fragmentation fractal dimensions of soils[J]. Soil Science Society of America Journal, 1996, 60(5): 1292-1297.
|
[9] |
毛灵涛, 薛 茹, 安里千, 等. 软土孔隙微观结构的分形研究[J]. 中国矿业大学学报, 2005, 34(5): 600-604. (MAO Ling-tao, XUE Ru, AN Qian-li, et al. Fractal Approach on Soft Soil Porosity Microstructure[J]. Journal of China University of Mining & Technology, 2005, 34(5): 600-604. (in Chinese))
|
[10] |
LAPIERRE C, LEROUEIL S, LOCAT J. Mercury intrusion and permeability of Louiseville clay[J]. Canadian Geotechnical Journal, 1990, 27(6): 761-773.
|
[11] |
TANAKA H, SHIWAKOTI D R, OMUKAIN N, et al. Pore size distribution of clayey soils measured by mercury intrusion porosimetry and its relation to hydraulic conductivity[J]. Soils and Foundations, 2003, 43(6): 63-73.
|
[12] |
NINJGARAV E, CHUNG S G, JANG W Y, et al. Pore size distribution of Pusan clay measured by mercury intrusion porosimetry[J]. KSCE Journal of Civil Engineering, 2007, 11(3): 133-139.
|
[13] |
江福河. 压汞法对不同深度软土固结的微观孔隙特征研究[J]. 科学技术与工程, 2011, 31(11): 7701-7706. (JIANG Fu-he. The study of micro pore characteristics on different depth soft soil consolidation by mercury intrusion porosimetry[J]. Science Technology and Engineering, 2013, 31(11): 7701-7706. (in Chinese))
|
[14] |
DIANOND S. Pore size distributions in clays[J]. Clays and Clay Minerals, 1970, 18(1): 7-23.
|
[15] |
CARY J W, HAYDEN C W. An index for soil pore size distribution[J]. Geoderma, 1973, 9(4): 249-256.
|
[16] |
COULON E, BRUANDA A. Effects of compaction on the porespace geometry in sandy soils[J]. Soil and Tillage Research, 1989, 15(1): 137-151.
|
[17] |
GRIFFITHS F, JOSHI R. Change in pore size distribution due to consolidation of clays[J]. Géotechnique, 1989, 39(1): 159-167.
|
[18] |
PENUMADU D, DEAN J. Compressibility effect in evaluating the pore-size distribution of kaolin clay using mercury intrusion porosimetry[J]. Canadian Geotechnical Journal, 2000, 37(2): 393-405.
|
[19] |
LI X, ZHANG L M. Characterization of dual-structure pore-size distribution of soil[J]. Canadian Geotechnical Journal, 2009, 46(2): 129-141.
|
[20] |
KOLIJI A, VULLIET L, LALOUI L. Structural characterization of unsaturated aggregated soil[J]. Canadian Geotechnical Journal, 2010, 47(3): 297-311.
|
[21] |
SIMMS P, YANGFUL E. Predicting soil-water characteristic curves of compacted plastic soils from measured pore-size distributions[J]. Géotechnique, 2002, 52(4): 269-278.
|
[22] |
胡 冉, 陈益峰, 周创兵, 等. 基于孔隙分布的变形土土水特征曲线模型[J]. 岩土工程学报, 2013, 35(8): 1451-1462. (HU Ran, CHEN Yi-feng, ZHOU Chuang-bing. A water retention curve model for deformable soils based on pore size distribution[J]. Chinese Journal of Geotechnical Engineering, 2013, 35(8): 1451-1462. (in Chinese))
|
[23] |
刘 洋, 周 健. 离散介质应变计算的非线性插值方法[J].岩土工程学报, 2006, 28(9): 1129-1133. (LIU Yang, ZHOU Jian. Nonlinear interpolation method for strain calculation in discrete media[J]. Chinese Journal of Geotechnical Engineering, 2006, 28(9): 1129-1133. (in Chinese))
|
[24] |
LI X, LI X-S. Micro-macro quantification of the internal structure of granular materials[J]. Journal of Engineering Mechanics, ASCE, 2009, 135(7): 641-56.
|
[25] |
NGUYEN Ngoc-Son, MAGOARIEC Hélène, CAMBOU Bernard, et al. Analysis of structure and strain at the meso-scale in 2D granular materials[J]. International Journal of Solids and Structures, 2009, 46(17): 3257-3271.
|
[26] |
CUNDALL P A, STRACK O D L. A discrete numerical model for granular assembles[J]. Géotechnique, 1979, 29(1): 47-65.
|
[27] |
MULCHRONE K F, COUDHURY K R. Fitting an ellipse to an arbitrary shape: implications for strain analysis[J]. Journal of Structural Geology, 2004, 26(1): 143-53.
|
[28] |
FITZGIBBON A, PILU M, FISHER R B. Direct least square fitting of ellipses[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 1999, 21(5): 476-80.
|
[29] |
IWASHITA K, ODA M. Micro-deformation mechanism of shear banding process based on modified distinct element method[J]. Powder Technology, 2000, 109(1/2/3): 192-205.
|
[30] |
THORNTON C, ANTONY S J. Quasi-static shear deformation of a soft particle system[J]. Powder Technology, 2000, 109(1/2/3): 179-191.
|