• 全国中文核心期刊
  • 中国科技核心期刊
  • 美国工程索引(EI)收录期刊
  • Scopus数据库收录期刊

埋地HDPE管道施工过程中装配应变分布规律的现场试验研究

尤佺, 张亚军, 王非, 杜延军, 周敏

尤佺, 张亚军, 王非, 杜延军, 周敏. 埋地HDPE管道施工过程中装配应变分布规律的现场试验研究[J]. 岩土工程学报, 2014, 36(12): 2282-2290. DOI: 10.11779/CJGE201412017
引用本文: 尤佺, 张亚军, 王非, 杜延军, 周敏. 埋地HDPE管道施工过程中装配应变分布规律的现场试验研究[J]. 岩土工程学报, 2014, 36(12): 2282-2290. DOI: 10.11779/CJGE201412017
YOU Quan, ZHANG Ya-jun, WANG Fei, DU Yan-jun, ZHOU Min. Full-scale field tests on hoop strains of buried HDPE pipes during construction[J]. Chinese Journal of Geotechnical Engineering, 2014, 36(12): 2282-2290. DOI: 10.11779/CJGE201412017
Citation: YOU Quan, ZHANG Ya-jun, WANG Fei, DU Yan-jun, ZHOU Min. Full-scale field tests on hoop strains of buried HDPE pipes during construction[J]. Chinese Journal of Geotechnical Engineering, 2014, 36(12): 2282-2290. DOI: 10.11779/CJGE201412017

埋地HDPE管道施工过程中装配应变分布规律的现场试验研究  English Version

基金项目: 国家自然科学基金项目(51310105030,51108078,51278100); 江苏省自然科学基金面上项目(BK2013294,BK2012022)
详细信息
    作者简介:

    尤 佺(1992- ),男,学士,主要从事地下工程方面的科研工作。E-mail: cnseuyq@gmail.com。

    通讯作者:

    杜延军

Full-scale field tests on hoop strains of buried HDPE pipes during construction

  • 摘要: 现场测试数据表明HDPE双壁波纹管道在填土施工时会产生较大装配应力和应变。然而,目前关于HDPE管道服役期力学性能的研究和设计方法均忽略装配效应对管道力学特性的影响,高估了管道服役性能并带来安全隐患。通过现场试验,对管径600 mm HDPE双壁波纹管道填土施工过程中产生的径向挠度与管周环向应变进行实时监测;结果表明,管道施工填土产生的最大装配应变发生在管侧(与管轴线等深度的管壁处),而管顶和管侧挠度近似相等;管顶挠度与填土高度和最大管周环向应变之间均存在良好线性关系。通过有限元数值模拟分析并综合现场试验数据,提出了基于填土高度的管顶挠度预测公式和基于管顶挠度的最大管周环向应变预测公式,可以方便快捷地预测HDPE管道装配应变。通过对比报道的两个现场试验的实测数据验证所得公式,结果表明所得公式预测值与实测管顶挠度的误差范围为7%~13%,表明该公式可准确计算施工填土时HDPE管道的管顶挠度。
    Abstract: Field test data show that the installation of HDPE pipes results in considerable additional strain and stress on the pipes. However, it has not been well addressed in previous studies. In this study, the 0.6 m-diameter HDPE pipes are used in the field tests to investigate the relationship among the hoop strains, vertical and horizontal deflections and thickness of soil cover. It is found that the hoop strains generated in the construction phase (i.e., installation of HDPE pipes) have a good linear relationship with the deflection and the thickness of soil cover. This finding is then validated by a series of finite element numerical simulations. Based on the FE analysis, an empirical relationship is proposed to predict the hoop strains on the HDPE pipes generated in the construction phase. The availability of the proposed method is validated by comparing the predicted values with the field measured ones reported in the previous studies. The results demonstrate that the proposed method has merits of satisfactory accuracy and easy use.
  • [1] 深圳市地下管线的规划建设与管理探讨 [N]. 中国建设报. http://www.chinajsb.cn/gb/content/2008-01/21/content_232788.htm (Discussion on the planning, construction and management of underground pipelines in Shenzhen[N]. China Construction News. http://www.chinajsb.cn/gb/ content/ 2008-01/21/ content_232788.htm (in Chinese))
    [2] 苑文军. HDPE 管道在排水工程中的应用特点[J]. 塑料制造, 2012(1): 68-70. (YUAN Wen-jun. Features of application of HDPE pipes in drainage works[J]. Plastic Manufacture, 2012(1): 68-70. (in Chinese))
    [3] 人行道上塌出大坑城管部门:排水管线断裂所致[N]. 哈尔滨新闻网. http://xinnews.my399.com/system/20120814/ 000436090.html (The sidewalk smashed with a pit, the department of urban management: caused by the fracture of drainage pipeline[N] Harbin News Net. http:// xinnews.my399.com/system/20120814/000436090.html (in Chinese))
    [4] FERNANDO N S M, SMALL J C, CARTER J P. Elastic analysis of buried structures subject to three-dimensional surface loading[J]. International Journal for Numerical and Analytical Methods in Geomechanics, 1996, 20(5): 331-349.
    [5] FERNANDO N S M, CARTER J P. Elastic analysis of buried pipes under surface patch loadings[J]. Journal of Geotechnical and Geoenvironmental Engineering, 1998, 124(8): 720-728.
    [6] 张土乔, 吴小刚. 垂直荷载作用下的管道纵向受力分析模式初探[J]. 中国市政工程, 2001(4): 41-45. doi:10.3969/ j.issn.1004-4655.2001.04.016. (ZHANG Tu-qiao, WU Xiao-gang. Initial analysis of longitudinal stress in pipeline under vertical load[J]. China Municipal Engineering, 2001(4): 41-45. doi:10.3969/j.issn.1004-4655.2001.04.016. (in Chinese))
    [7] 李镜培, 丁士君. 邻近建筑荷载对地下管线的影响分析[J].同济大学学报(自然科学版), 2004, 32(12): 1553-1557. doi:10.3321/j.issn:0253-374X.2004.12.001. (LI Jing-pei"> doi:10.3321/j.issn:0253-374X.2004.12.001. (LI Jing-pei, DING Shi-jun. Influence of additional load caused by adjacent buildings on underground pipeline[J]. Journal of Tongji University(Natural Science), 2004, 32(12): 1553-1557. doi:10.3321/j.issn:0253-374X.2004.12.001. (in Chinese))
    [8] TAFRESHI S N M, MEHRJARDI G T, DAWSON A R. Buried pipes in rubber-soil backfilled trenches under cyclic loading[J]. Journal of Geotechnical and Geoenvironmental Engineering, 2012, 138(11): 1346-1356.
    [9] AROCKIASAMY M, CHAALLAL O, LIMPETEEPRAKARN T. Full-scale field tests on flexible pipes under live load application[J]. Journal of performance of constructed facilities, 2006, 20(1): 21-27.
    [10] GB/T 50145—2007 土的工程分类标准[S]. 2008. (GB/T 50145—2007 Standard for engineering classification of soil[S]. 2008. (in Chinese))
    [11] CECS 164:2004埋地聚乙烯排水管管道工程技术规程[S]. 2004. (CECS 164:2004 Technical specification for buried PE pipeline of sewer engineering[S]. 2004. (in Chinese))
    [12] MCAFFEE R P, VALSANGKAR A J. Field performance, centrifuge testing, and numerical modelling of an induced trench installation[J]. Canadian Geotechnical Journal, 2008, 45(1): 85-101.
    [13] SARGAND S, MASADA T, TARAWNEH B, et al. Deeply buried thermoplastic pipe field performance over five years[J]. Journal of Geotechnical and Geoenvironmental Engineering, 2008, 134(8): 1181-1191.
    [14] AROCKIASAMY M, CHAALLAL O, LIMPETEEPRAKARN T. Full-scale field tests on flexible pipes under live load application[J]. Journal of Performance of Constructed Facilities, 2006, 20(1): 21-27.
    [15] MAI V T, HOULT N A, MOORE I D. Effect of deterioration on the performance of corrugated steel culverts[J]. Journal of Geotechnical and Geoenvironmental Engineering, 2013, 140(2).
    [16] MOSER A P, FOLKMAN S. Buried pipe design[M]. 3rd ed. Utah: McGraw-Hill Professional, 1990: 10-33.
    [17] 黄文胜. 土的抗剪强度试验成果与其它指标的关系及影响因素分析[J]. 西北水电, 2011(3): 82-85. (HUANG Wen-sheng. The relationship between soil shear strength test results and other indexes and analysis of effect factors [J]. Northwest Hydropower, 2011(3): 82-85. (in Chinese))
    [18] 郭婷婷. EPS 板在上埋式涵洞土压力减荷中的应用与分析[J]. 水利水电科技进展, 2011, 31(1): 74-78. (GUO Ting-ting. Application of EPS blocks in load reduction of earth pressures on culverts under high-stacked soil[J]. Advances in Science and Technology of Water Resources, 2011, 31(1): 74-78. (in Chinese))
    [19] 郝中海, 崔江余. 黏土压实特性分析研究[J].工程力学, 2003(增刊): 192-195.(HAO Zhong-hai, CUI Jiang-yu. Clay compaction characteristics analysis[J]. Engineering Mechanics, 2003(S0): 192-195. (in Chinese))
    [20] 边学成, 申文明, 马祖桥, 等. 不同填土管涵土压力模型试验和数值模拟研究[J]. 土木工程学报, 2012, 45(1): 127-133. (BIAN Xue-cheng, SHEN Wen-ming, MA Zu-qiao, et al. Model test and numerical simulation of earth pressure on under different earth backfill conditions[J]. China Civil Engineering Journal, 2012, 45(1): 127-133. (in Chinese))
    [21] 陈保国, 骆瑞萍, 孙金山. 上埋式盖板涵受力特性及影响因素研究[J]. 岩土力学, 2011, 32(1): 199-206. (CHEN Bao-guo, LUO Rui-ping, SUN Jin-shan. Study of stress characteristics and its influencing factors of embankment installation slab-culverts[J]. Rock and Soil Mechanics, 2011, 32(1): 199-206. (in Chinese))
  • 期刊类型引用(13)

    1. 肖智勇,孙小翔,王刚,王铭震,贾文雯,姜枫,郑程程. 气体压差影响下的煤渗透率非平衡演化全过程模型. 岩土工程学报. 2025(02): 355-364 . 本站查看
    2. 杨希培,邢玉强. 采动应力作用下煤岩渗流场演化规律数值模拟. 煤矿安全. 2024(04): 33-41 . 百度学术
    3. 王伟,余金昊,方志明,李小春,李琦,陈向军,王亮. 基于体积应变的煤体渗透率模型及影响参数分析. 煤炭学报. 2024(06): 2741-2756 . 百度学术
    4. 姬红英,王文博,辛亚军,张东营,高忠国,任金武. 水力耦合下煤样声发射分形-渗透率模型及试验研究. 煤炭学报. 2024(08): 3381-3398 . 百度学术
    5. 龙航,林海飞,马东民,李树刚,季鹏飞,白杨. 基于弹-塑性变形的含瓦斯煤体渗透率动态演化模型. 煤炭学报. 2024(09): 3859-3871 . 百度学术
    6. 王刚,王铭震,肖智勇,孙小翔,贾文雯,姜枫,郑程程. 考虑基质吸附变形特性的煤岩渗透率演化研究. 煤炭科学技术. 2024(12): 193-203 . 百度学术
    7. 刘辉辉,于斌,林柏泉,夏彬伟,李全贵,邹全乐. 原位煤层抽采多重应力演化规律及对渗透率控制机制. 岩石力学与工程学报. 2023(04): 906-917 . 百度学术
    8. 孔德森,赵明凯,时健,滕森. 基于分形维数特征的岩石介质气-水相对渗透率预测模型研究. 岩土工程学报. 2023(07): 1421-1429 . 本站查看
    9. 亓宪寅,王胜伟,耿殿栋,付鹏. 基于等效裂隙开度的层理煤岩渗透率模型研究. 煤矿安全. 2023(08): 1-11 . 百度学术
    10. 荣腾龙,刘克柳,周宏伟,关灿,陈岩,任伟光. 采动应力下深部煤体渗透率演化规律研究. 岩土工程学报. 2022(06): 1106-1114 . 本站查看
    11. 王刚,肖智勇,王长盛,蒋宇静,于俊红. 基于非平衡状态的煤层中气体运移规律研究. 岩土工程学报. 2022(08): 1512-1520 . 本站查看
    12. 林海飞,龙航,李树刚,赵鹏翔,严敏,白杨,肖通,秦澳立. 煤体瓦斯吸附解吸与压裂渗流全过程真三轴试验系统研发与应用. 岩石力学与工程学报. 2022(S2): 3294-3305 . 百度学术
    13. 程先振,陈连军,栾恒杰,王春光,蒋宇静. 基质-裂隙相互作用对煤渗透率的影响:考虑煤的软化. 岩土工程学报. 2022(10): 1890-1898 . 本站查看

    其他类型引用(6)

计量
  • 文章访问数:  247
  • HTML全文浏览量:  5
  • PDF下载量:  287
  • 被引次数: 19
出版历程
  • 收稿日期:  2014-01-25
  • 发布日期:  2014-12-25

目录

    /

    返回文章
    返回