• 全国中文核心期刊
  • 中国科技核心期刊
  • 美国工程索引(EI)收录期刊
  • Scopus数据库收录期刊

渗透吸力对重塑黏土的压缩和渗透特性影响的试验研究

张彤炜, 邓永锋, 刘松玉, 杨忠超

张彤炜, 邓永锋, 刘松玉, 杨忠超. 渗透吸力对重塑黏土的压缩和渗透特性影响的试验研究[J]. 岩土工程学报, 2014, 36(12): 2260-2266. DOI: 10.11779/CJGE201412014
引用本文: 张彤炜, 邓永锋, 刘松玉, 杨忠超. 渗透吸力对重塑黏土的压缩和渗透特性影响的试验研究[J]. 岩土工程学报, 2014, 36(12): 2260-2266. DOI: 10.11779/CJGE201412014
ZHANG Tong-wei, DENG Yong-feng, LIU Song-yu, YANG Zhong-chao. Experimental investigation of osmotic suction effect on hydro-mechanical behaviour of remolded clay[J]. Chinese Journal of Geotechnical Engineering, 2014, 36(12): 2260-2266. DOI: 10.11779/CJGE201412014
Citation: ZHANG Tong-wei, DENG Yong-feng, LIU Song-yu, YANG Zhong-chao. Experimental investigation of osmotic suction effect on hydro-mechanical behaviour of remolded clay[J]. Chinese Journal of Geotechnical Engineering, 2014, 36(12): 2260-2266. DOI: 10.11779/CJGE201412014

渗透吸力对重塑黏土的压缩和渗透特性影响的试验研究  English Version

基金项目: 国家自然科学基金项目(51378117,41330641); 水利水运工程教育部重点实验室及国家内河航道整治工程技术研究中心开放基金项目(SLK2012B01); 江苏省普通高校研究生科研创新计划资助项目(KYLX_0148)
详细信息
    作者简介:

    张彤炜 (1983- ),男,博士研究生,主要从事软黏土工程特性的研究。E-mail: ztw_123@163.com。

    通讯作者:

    邓永锋

Experimental investigation of osmotic suction effect on hydro-mechanical behaviour of remolded clay

  • 摘要: 已有研究表明孔隙水盐分对黏土的力学性质有着重要影响,但相关的定量研究仍需进一步深入。以渗透吸力作为宏观参数,将商用高岭土与钙基膨润土的混合土作为研究对象,用不同浓度的NaCl溶液与土混合,进行饱和重塑土的固结试验,探究孔隙水盐分对饱和重塑黏土压缩特性和渗透特性的影响规律。试验结果表明重塑饱和黏土的压缩指数Cc随着渗透吸力的增加而呈指数规律衰减,回弹指数未产生明显变化;在Burland体系下,渗透吸力对曲线初始段有较大影响;而屈服后,压缩曲线可以在Iv-lgσv分析体系中进行归一化。相同固结压力和孔隙比下,渗透吸力越小,次固结系数越大;次固结系数与压缩指数的比值 Cα/Cc的比值并不为常数,随着渗透吸力的增大而减小。同样的初始孔隙比,比例系数Cke/Δlgkv随渗透吸力增加而非线性递减,延拓了Tavenas认为比例系数Ck与初始孔隙比e0线性相关的认知。
    Abstract: The chemistry of pore water obviously affects the hydro-mechanical behaviour of clay, but the quantitative evaluation of pore water effect needs to be further conducted. The oedometer tests on kaolinite and Ca-bentonite mixtures saturated with different concentrations of NaCl solution are performed to investigate pore water chemical effect on the hydro-mechanical behaviour of remolded clay, where the osmotic suction is adopted as the characterization parameter. The results indicate that the compression index exponentially decreases with the osmotic suction, while the swelling index is almost constant. The compression behaviors after pre-yielding can be normalized in the Iv-lgσv system proposed by Burland, but it is not suitable before pre-yielding. There is a negative correlation between the secondary consolidation coefficients and the osmotic suctions, furthermore, the ratio of the secondary consolidation coefficient to the compression index decreases with the osmotic suction. The coefficient of Cke/Δlgkv to depict the hydraulic conductivity is related to the initial void ratio and can be expressed as a function of the osmotic suction, which extends the understanding of this parameter.
  • [1] GENS A. Soil-environment interactions in geotechnical engineering[J]. Géotechnique, 2010, 60(1): 3-74.
    [2] 查甫生, 刘松玉, 杜延军. 黄土湿陷过程中微结构变化规律的电阻率法定量分析[J]. 岩土力学, 2010, 31(6): 1692-1698. (ZHA Fu-sheng, LIU Song-yu, DU Yan-jun, et al. Quantitative assessment on change in microstructure of loess during collapsing using electrical resistivity measurement[J]. Rock and Soil Mechanics, 2010, 31(6): 1692-1698. (in Chinese))
    [3] 李永红. 氯盐渍土的变形和强度特性研究[D]. 杨凌: 西北农林科技大学, 2006. (LI Yong-hong. Research on the deformation and strength property of chlorine saline soil[D]. Yangling: North West Agriculture and Forestry University, 2006. (in Chinese))
    [4] BJERRUM L, ROSENQVIST I T. Some experiments with artificially sedimented clays[J]. Géotechnique, 1956, 6(3): 124-136.
    [5] RANKKA K, ANDERSSON-SKÖLD Y, HULTEN C, et al. Quick clay in Sweden[J]. Swedish Geotechnical Institute Report, 2004, 65: 145.
    [6] 柴寿喜, 王晓燕, 魏 丽, 等. 滨海盐渍土的工程地质问题与防护固化方法[J]. 工程勘察, 2009(7): 1-4. (CHAI Shou-xi, WANG Xiao-yan, WEI Li, et al.Analysis on engineering geological problems of inshore saline soil and treatment measures[J]. Geotechnical Investigation & Surveying, 2009(7): 1-4. (in Chinese))
    [7] BOLT G H. Physico-chemical analyses of the compressibility of pure clay[J]. Géotechnique, 1956, 6: 86-93.
    [8] MITCHELL J K, SOGA K. Fundamentals of soil behavior[M]. New York: Wiley, 1976.
    [9] SRIDHARAN A, JAYADEVA M S. Double layer theory and compressibility of clays[J]. Géotechnique, 1982, 32(2): 133-144.
    [10] BARBOUR S L, FREDLUND D G. Mechanisms of osmotic flow and volume change in clay soils[J]. Canadian Geotechnical Journal, 1989, 26(4): 551-562.
    [11] HUECKEL T. Chemo-plasticity of clays subjected to stress and flow of a single contaminant[J]. International Journal for Numerical and Analytical Methods in Geomechanics, 1997, 21(1): 43-72.
    [12] LORET B, HUECKEL T, GAJO A. Chemo-mechanical coupling in saturated porous media: elastic-plastic behaviour of homoionic expansive clays[J]. International Journal of Solids and Structures, 2002, 39(10): 2773-2806.
    [13] GUIMARAES L D N, GENS A, SANCHEZ M, et al. A chemo-mechanical constitutive model accounting for cation exchange in expansive clays[J]. Géotechnique, 2013, 63(3): 221-234.
    [14] MERTEN Ulrich. Desalination by reverse osmosis[M]. Massachusetts: MIT Press, 1966.
    [15] FREDLUND D G, RAHARDJO H. Soil mechanics for unsaturated soils[M]. New York: John Wiley & Sons, 1993.
    [16] WITTEVEEN P, FERRARI A, LALOUI L. An experimental and constitutive investigation on the chemo -mechanical behaviour of a clay[J]. Géotechnique, 2013, 63(3): 244-255.
    [17] CHEN J, ANANDARAJAH A. Influence of pore fluid composition on volume of sediments in kaolinite suspensions[J]. Clays and Clay Minerals, 1998, 46(2): 145-152.
    [18] 刘启贞. 长江口细颗粒泥沙絮凝主要影响因子及其环境效应研究[D]. 上海: 华东师范大学, 2007. (LIU Qi-zhen. Study on the flocculation parameters of fine sediments and the environmental effects in the Changjiang Estuary[D]. Shanghai: East China Normal University, 2007. (in Chinese))
    [19] 张 倩. 水化学环境变化对多孔介质强度和渗透性的影响[D]. 青岛: 中国海洋大学, 2010. (ZHANG Qian. Effects of different electrical solutions on strength and permeability of saturated porous[D]. Qingdao: Ocean University of China, 2010. (in Chinese))
    [20] 樊恒辉, 李洪良, 赵高文. 黏性土的物理化学及矿物学性质与分散机理[J]. 岩土工程学报, 2012, 34(9): 1740-1745. (FAN Heng-hui, LI Hong-liang, ZHAO Gao-wen. Relation among dispersive mechanism, physical-chemical and mineral properties of clayey soil[J]. Chinese Journal of Geotechnical Engineering, 2012, 34(9): 1740-1745. (in Chinese))
    [21] SRIDHARAN A, EL-SHAFEI A, MIURA N. Mechanisms controlling the undrained strength behavior of remolded Ariake marine clays[J]. Marine Georesources and Geotechnology, 2002, 20(1): 21-50.
    [22] BURLAND J B. On the compressibility and shear strength of natural clays[J]. Géotechnique, 1990, 40(3): 329-378.
    [23] 曾玲玲, 洪振舜, 刘松玉, 等. 重塑黏土次固结性状的变化规律与定量评价[J]. 岩土工程学报, 2012, 34(8): 1496-1500. (ZENG Ling-ling, HONG Zhen-shun, LIU Song-yu, CHEN Fu-quan, Variation law and quantitative evaluation of secondary consolidation behavior for remolded clays[J]. Chinese Journal of Geotechnical Engineering, 2012, 34(8): 1496-1500. (in Chinese))
    [24] 殷宗泽, 张海波, 朱俊高, 等. 软土的次固结[J]. 岩土工程学报, 2003, 25(5): 521-526. (YIN Zong-ze, ZHANG Hai-bo, ZHU Jun-gao, et al. Secondary consolidation of soft soils[J]. Chinese Journal of Geotechnical Engineering, 2003, 25(5): 521-526. (in Chinese))
    [25] MESRI G, GODLEWSKI P M. Time and stress- compressibility interrelationship[J]. Journal of the Geotechnical Engineering Division, 1977, 103(5): 417-430.
    [26] TAYLOR D W. Fundamentals of soil mechanics[J]. Soil Science, 1948, 66(2): 161.
    [27] TAVENAS F, LEBLOND P, JEAN P, et al. The permeability of natural soft clays. Part I: methods of laboratory measurement[J]. Canadian Geotechnical Journal, 1983, 20(4): 629-644.
计量
  • 文章访问数:  449
  • HTML全文浏览量:  9
  • PDF下载量:  11571
  • 被引次数: 0
出版历程
  • 收稿日期:  2014-02-24
  • 发布日期:  2014-12-25

目录

    /

    返回文章
    返回