• 全国中文核心期刊
  • 中国科技核心期刊
  • 美国工程索引(EI)收录期刊
  • Scopus数据库收录期刊
ZHANG Tong-wei, DENG Yong-feng, LIU Song-yu, YANG Zhong-chao. Experimental investigation of osmotic suction effect on hydro-mechanical behaviour of remolded clay[J]. Chinese Journal of Geotechnical Engineering, 2014, 36(12): 2260-2266. DOI: 10.11779/CJGE201412014
Citation: ZHANG Tong-wei, DENG Yong-feng, LIU Song-yu, YANG Zhong-chao. Experimental investigation of osmotic suction effect on hydro-mechanical behaviour of remolded clay[J]. Chinese Journal of Geotechnical Engineering, 2014, 36(12): 2260-2266. DOI: 10.11779/CJGE201412014

Experimental investigation of osmotic suction effect on hydro-mechanical behaviour of remolded clay

More Information
  • Received Date: February 24, 2014
  • Published Date: December 25, 2014
  • The chemistry of pore water obviously affects the hydro-mechanical behaviour of clay, but the quantitative evaluation of pore water effect needs to be further conducted. The oedometer tests on kaolinite and Ca-bentonite mixtures saturated with different concentrations of NaCl solution are performed to investigate pore water chemical effect on the hydro-mechanical behaviour of remolded clay, where the osmotic suction is adopted as the characterization parameter. The results indicate that the compression index exponentially decreases with the osmotic suction, while the swelling index is almost constant. The compression behaviors after pre-yielding can be normalized in the Iv-lgσv system proposed by Burland, but it is not suitable before pre-yielding. There is a negative correlation between the secondary consolidation coefficients and the osmotic suctions, furthermore, the ratio of the secondary consolidation coefficient to the compression index decreases with the osmotic suction. The coefficient of Cke/Δlgkv to depict the hydraulic conductivity is related to the initial void ratio and can be expressed as a function of the osmotic suction, which extends the understanding of this parameter.
  • [1]
    GENS A. Soil-environment interactions in geotechnical engineering[J]. Géotechnique, 2010, 60(1): 3-74.
    [2]
    查甫生, 刘松玉, 杜延军. 黄土湿陷过程中微结构变化规律的电阻率法定量分析[J]. 岩土力学, 2010, 31(6): 1692-1698. (ZHA Fu-sheng, LIU Song-yu, DU Yan-jun, et al. Quantitative assessment on change in microstructure of loess during collapsing using electrical resistivity measurement[J]. Rock and Soil Mechanics, 2010, 31(6): 1692-1698. (in Chinese))
    [3]
    李永红. 氯盐渍土的变形和强度特性研究[D]. 杨凌: 西北农林科技大学, 2006. (LI Yong-hong. Research on the deformation and strength property of chlorine saline soil[D]. Yangling: North West Agriculture and Forestry University, 2006. (in Chinese))
    [4]
    BJERRUM L, ROSENQVIST I T. Some experiments with artificially sedimented clays[J]. Géotechnique, 1956, 6(3): 124-136.
    [5]
    RANKKA K, ANDERSSON-SKÖLD Y, HULTEN C, et al. Quick clay in Sweden[J]. Swedish Geotechnical Institute Report, 2004, 65: 145.
    [6]
    柴寿喜, 王晓燕, 魏 丽, 等. 滨海盐渍土的工程地质问题与防护固化方法[J]. 工程勘察, 2009(7): 1-4. (CHAI Shou-xi, WANG Xiao-yan, WEI Li, et al.Analysis on engineering geological problems of inshore saline soil and treatment measures[J]. Geotechnical Investigation & Surveying, 2009(7): 1-4. (in Chinese))
    [7]
    BOLT G H. Physico-chemical analyses of the compressibility of pure clay[J]. Géotechnique, 1956, 6: 86-93.
    [8]
    MITCHELL J K, SOGA K. Fundamentals of soil behavior[M]. New York: Wiley, 1976.
    [9]
    SRIDHARAN A, JAYADEVA M S. Double layer theory and compressibility of clays[J]. Géotechnique, 1982, 32(2): 133-144.
    [10]
    BARBOUR S L, FREDLUND D G. Mechanisms of osmotic flow and volume change in clay soils[J]. Canadian Geotechnical Journal, 1989, 26(4): 551-562.
    [11]
    HUECKEL T. Chemo-plasticity of clays subjected to stress and flow of a single contaminant[J]. International Journal for Numerical and Analytical Methods in Geomechanics, 1997, 21(1): 43-72.
    [12]
    LORET B, HUECKEL T, GAJO A. Chemo-mechanical coupling in saturated porous media: elastic-plastic behaviour of homoionic expansive clays[J]. International Journal of Solids and Structures, 2002, 39(10): 2773-2806.
    [13]
    GUIMARAES L D N, GENS A, SANCHEZ M, et al. A chemo-mechanical constitutive model accounting for cation exchange in expansive clays[J]. Géotechnique, 2013, 63(3): 221-234.
    [14]
    MERTEN Ulrich. Desalination by reverse osmosis[M]. Massachusetts: MIT Press, 1966.
    [15]
    FREDLUND D G, RAHARDJO H. Soil mechanics for unsaturated soils[M]. New York: John Wiley & Sons, 1993.
    [16]
    WITTEVEEN P, FERRARI A, LALOUI L. An experimental and constitutive investigation on the chemo -mechanical behaviour of a clay[J]. Géotechnique, 2013, 63(3): 244-255.
    [17]
    CHEN J, ANANDARAJAH A. Influence of pore fluid composition on volume of sediments in kaolinite suspensions[J]. Clays and Clay Minerals, 1998, 46(2): 145-152.
    [18]
    刘启贞. 长江口细颗粒泥沙絮凝主要影响因子及其环境效应研究[D]. 上海: 华东师范大学, 2007. (LIU Qi-zhen. Study on the flocculation parameters of fine sediments and the environmental effects in the Changjiang Estuary[D]. Shanghai: East China Normal University, 2007. (in Chinese))
    [19]
    张 倩. 水化学环境变化对多孔介质强度和渗透性的影响[D]. 青岛: 中国海洋大学, 2010. (ZHANG Qian. Effects of different electrical solutions on strength and permeability of saturated porous[D]. Qingdao: Ocean University of China, 2010. (in Chinese))
    [20]
    樊恒辉, 李洪良, 赵高文. 黏性土的物理化学及矿物学性质与分散机理[J]. 岩土工程学报, 2012, 34(9): 1740-1745. (FAN Heng-hui, LI Hong-liang, ZHAO Gao-wen. Relation among dispersive mechanism, physical-chemical and mineral properties of clayey soil[J]. Chinese Journal of Geotechnical Engineering, 2012, 34(9): 1740-1745. (in Chinese))
    [21]
    SRIDHARAN A, EL-SHAFEI A, MIURA N. Mechanisms controlling the undrained strength behavior of remolded Ariake marine clays[J]. Marine Georesources and Geotechnology, 2002, 20(1): 21-50.
    [22]
    BURLAND J B. On the compressibility and shear strength of natural clays[J]. Géotechnique, 1990, 40(3): 329-378.
    [23]
    曾玲玲, 洪振舜, 刘松玉, 等. 重塑黏土次固结性状的变化规律与定量评价[J]. 岩土工程学报, 2012, 34(8): 1496-1500. (ZENG Ling-ling, HONG Zhen-shun, LIU Song-yu, CHEN Fu-quan, Variation law and quantitative evaluation of secondary consolidation behavior for remolded clays[J]. Chinese Journal of Geotechnical Engineering, 2012, 34(8): 1496-1500. (in Chinese))
    [24]
    殷宗泽, 张海波, 朱俊高, 等. 软土的次固结[J]. 岩土工程学报, 2003, 25(5): 521-526. (YIN Zong-ze, ZHANG Hai-bo, ZHU Jun-gao, et al. Secondary consolidation of soft soils[J]. Chinese Journal of Geotechnical Engineering, 2003, 25(5): 521-526. (in Chinese))
    [25]
    MESRI G, GODLEWSKI P M. Time and stress- compressibility interrelationship[J]. Journal of the Geotechnical Engineering Division, 1977, 103(5): 417-430.
    [26]
    TAYLOR D W. Fundamentals of soil mechanics[J]. Soil Science, 1948, 66(2): 161.
    [27]
    TAVENAS F, LEBLOND P, JEAN P, et al. The permeability of natural soft clays. Part I: methods of laboratory measurement[J]. Canadian Geotechnical Journal, 1983, 20(4): 629-644.

Catalog

    Article views (442) PDF downloads (11570) Cited by()
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return