• 全国中文核心期刊
  • 中国科技核心期刊
  • 美国工程索引(EI)收录期刊
  • Scopus数据库收录期刊

单轴压缩下节理间距和倾角对岩体模拟试件强度和变形的影响研究

陈新, 李东威, 王莉贤, 张市飞

陈新, 李东威, 王莉贤, 张市飞. 单轴压缩下节理间距和倾角对岩体模拟试件强度和变形的影响研究[J]. 岩土工程学报, 2014, 36(12): 2236-2245. DOI: 10.11779/CJGE201412011
引用本文: 陈新, 李东威, 王莉贤, 张市飞. 单轴压缩下节理间距和倾角对岩体模拟试件强度和变形的影响研究[J]. 岩土工程学报, 2014, 36(12): 2236-2245. DOI: 10.11779/CJGE201412011
CHEN Xin, LI Dong-wei, WANG Li-xian, ZHANG Shi-fei. Experimental study on effect of spacing and inclination angle of joints on strength and deformation properties of rock masses under uniaxial compression[J]. Chinese Journal of Geotechnical Engineering, 2014, 36(12): 2236-2245. DOI: 10.11779/CJGE201412011
Citation: CHEN Xin, LI Dong-wei, WANG Li-xian, ZHANG Shi-fei. Experimental study on effect of spacing and inclination angle of joints on strength and deformation properties of rock masses under uniaxial compression[J]. Chinese Journal of Geotechnical Engineering, 2014, 36(12): 2236-2245. DOI: 10.11779/CJGE201412011

单轴压缩下节理间距和倾角对岩体模拟试件强度和变形的影响研究  English Version

基金项目: 国家自然科学基金项目(11102224)
详细信息
    作者简介:

    陈 新(1973- ),女,副教授,主要从事岩石力学与土木工程方面的研究和教学。E-mail: chx@cumtb.edu.cn。

Experimental study on effect of spacing and inclination angle of joints on strength and deformation properties of rock masses under uniaxial compression

  • 摘要: 通过含一组预置张开裂隙石膏试件的单轴压缩试验,系统地研究了当节理连通率固定时,节理组的间距和倾角对试件强度和变形特性的影响。研究发现:①随着节理间距的增大,试件的应力-应变曲线的由单峰型变为多峰型,延性增大。试验中观察到的应力-应变曲线包括4种类型,单峰型、软化段多峰型、多峰平台后软化型和多峰平台后硬化型。②当节理间距不变时,试件的当量化强度、当量化弹性模量和第一峰值应变随节理倾角的变化曲线都呈V型,其最小值发生在节理倾角为45°处;而残余强度与强度之比和第二峰值应变随节理面倾角的变化规律则反之。③当节理倾角不变时,当量化弹模、当量化强度和第一峰值应变都随节理化系数的增大而减小;而残余强度与强度之比和第二峰值应变则反之。④各节理倾角下,试件的当量化弹模和当量化强度随节理化系数的变化规律可以用相同形式的幂函数来表示。⑤上述宏观力学行为与预制节理闭合、次生裂隙发展等细观损伤力学机制密切相关。上述研究表明,节理间距对岩体的强度和变形特性的影响有显著的各向异性。
    Abstract: For the gypsum specimens containing a set of preexisting open flaws with fixed joint continuity factor, the influences of inclination angle and spacing of joints on the strength and deformation of the jointed specimens under uniaxial compression are systematically investigated through experiments. It is found that: (1) With the increase of joint spacing, the axial stress-axial strain curve changes from single-peak curve to multi-peak one, indicating that the ductility of the specimens increases. Four types of stress-strain curves are observed, i.e., single-peak, multi-peak during softening stage, softening after multi-peak yield platform and hardening after multi-peak yield platform. (2) For the specimens with constant joint spacing, the curves of the unified Young’s modulus, the unified strength and the first peak strain with the inclination angle of joints are V-shaped, and the minimum occurs at the inclination angle of 45 degrees, while the ratio of the residual strength to the strength and the last peak strain have inverse tendency. (3) For specimens with constant joint inclination angle, with the increase of the jointing index (the reciprocal of the joint spacing), the unified Young’s modulus, the unified strength and the first peak strain decrease, while the ratio of residual strength to strength and the last peak strain increase. (4) For each joint inclination angle, the relation between the unified Young’s modulus and the jointing index and that between the unified strength and the jointing index can be expressed by the power functions. (5) The macroscopic behavior of the jointed specimens is correlated to the closure of pre-existing joints and the cracking process of the specimen matrix. The anisotropic influence of joint spacing on the strength and deformation of jointed rock masses is significant.
  • [1] HUDSON J A, HARRISON J P. Engineering rock mechanics: an introduction to the principles[M]. Oxford: Elsevier, 1997: 106-111.
    [2] KULATILAKE P H S W, WANG S D, STEPHANSSON O. Effect of finite size joints on the deformability of jointed rock at the 3D level[J]. International Journal of Rock Mechanics and Mining Sciences, 1993, 30: 479-501.
    [3] LUBARDA V A, KRAJCINOVIĆ D. Damage tensors and the crack density distribution[J]. International Journal of Solids and Structure, 1993, 30(2): 2859-2877.
    [4] ODA M, YAMABE T, ISHIZUKA Y, et al. Elastic stress and strain in jointed rock masses by means of crack tensor analysis[J]. Rock Mechanics and Rock Engineering, 1993, 26(2): 89-112.
    [5] KAWAMOTO T, ICHIKAWA Y, KYOYA T. Deformation and fracturing behavior of discontinuous rock mass and damage mechanics theory[J]. International Journal for Numerical and Analytical Methods in Geomechanics, 1988, 12(1): 1-30.
    [6] SWOBODA G, SHEN X P, ROSAS L. Damage model for jointed rock mass and its application to tunnelling[J]. Computers and Geotechnics, 1998, 22(3/4): 183-203.
    [7] EINSTEIN H H, HIRSCHFELD R C. Model studies on mechanics of jointed rock[J]. Journal of the Soil Mechanics and Foundations Division, 1973, 99(3): 229-248.
    [8] TIWARI R P, SESHAGIRI K. Post failure behaviour of a rock mass under the influence of triaxial and true triaxial confinement[J]. Engineering Geology, 2006, 84(3/4): 112-129.
    [9] GOLDSTEIN M, GOOSEV B, PYROGOVSKY N, et al. Investigation of mechanical properties of cracked rock[C]// Proceedings of the 1st ISRM Congress, Lisbon, 1966(1): 521-524.
    [10] LAJTAI E Z. Strength of discontinuous rocks in direct shear[J]. Géotechnique, 1969, 19(2): 218-233.
    [11] BOBET A, EINSTEIN H H. Fracture coalescence in rock-type material under uniaxial and biaxial compression[J]. International Journal of Rock Mechanics and Mining Sciences, 1998, 35(7): 863-888.
    [12] GEHLE C,KUTTER H K. Breakage and shear behaviour of intermittent rock joints[J]. International Journal of Rock Mechanics and Mining Sciences, 2003, 40(5): 687-700.
    [13] PRUDENCIO M, JAN M V S. Strength and failure modes of rock mass models with non-persistent joints[J]. International Journal of Rock Mechanics and Mining Sciences, 2007, 44(6): 890-902.
    [14] 白世伟, 任伟中, 丰定祥, 等. 共面闭合断续节理岩体强度特性直剪试验研究[J]. 岩土力学, 1999, 20(2): 10-16. (BAI Shi-wei, REN Wei-zhong, FENG Ding-xiang, et al. Research on the strength behavior of rock containing coplanar close intermittent joints by direct shear test[J]. Rock and Soil Mechanics, 1999, 20(2): 10-16. (in Chinese))
    [15] 陈洪凯, 唐红梅. 危岩主控结构面强度参数计算方法[J]. 工程地质学报, 2008, 16(1): 37-41. (CHEN Hong-kai,TANG Hong-mei. Method for calculating strength parameters of structural planes controlling the rock block stability[J]. Journal of Engineering Geology, 2008, 16(1): 37-41. (in Chinese))
    [16] 陈 新, 廖志红, 李德建. 节理倾角及连通率对岩体强度、变形影响的单轴压缩试验研究[J]. 岩石力学与工程学报, 2011, 30(4): 781-789. (CHEN Xin, LIAO Zhi-hong, LI De-jian. Experimental study on the effect of joint orientation and persistence on the strength and deformation properties of rock masses under uniaxial compression[J]. Chinese Journal of Rock Mechanics and Engineering, 2011, 30(4): 781-789. (in Chinese))
    [17] CHEN Xin, LIAO Zhi-hong, PENG Xi. Deformability characteristics of jointed rock masses under uniaxial compression[J]. International Journal of Mining Science and Technology, 2012, 22(2): 213-221.
    [18] CHEN Xin, LIAO Zhi-hong, PENG Xi. Cracking process of rock mass models under uniaxial compression [J]. Journal of Central South University, 2013, 20(6): 1661-1678.
    [19] 陈 新, 王仕志, 李 磊. 节理岩体模型单轴压缩破碎规律研究[J]. 岩石力学与工程学报, 2012, 31(5): 898-907. (CHEN Xin, WANG Shi-zhi, LI Lei. Characteristics of fragments of jointed rock mass models under uniaxial compression[J]. Chinese Journal of Rock Mechanics and Engineering, 2012, 31(5): 898-907. (in Chinese))
    [20] 陈 新, 彭 曦, 李东威, 等. 基于两种破裂判据的裂隙岩体单轴压缩起裂分析[J]. 工程力学, 2013, 30(10): 227-235. (CHEN Xin, PENG Xi, LI Dong-wei , et al. Analysis on cracking mechanism of fractured rock masses under uniaxial compression based on the two cracking criteria[J]. Engineering Mechanics, 2013, 30(10): 227-235. (in Chinese))
    [21] 孙卫军, 周维垣. 裂隙岩体弹塑性-损伤本构模型[J]. 岩石力学与工程学报, 1990, 9(2): 108-119. (SUN Wei-jun, Zhou Wei-yuan. An elasto-plastic damage mechanics constitutive model for jointed rock mass[J]. Chinese Journal of Rock Mechanics and Engineering, 1990, 9(2): 108-119. (in Chinese))
  • 期刊类型引用(13)

    1. 肖智勇,孙小翔,王刚,王铭震,贾文雯,姜枫,郑程程. 气体压差影响下的煤渗透率非平衡演化全过程模型. 岩土工程学报. 2025(02): 355-364 . 本站查看
    2. 杨希培,邢玉强. 采动应力作用下煤岩渗流场演化规律数值模拟. 煤矿安全. 2024(04): 33-41 . 百度学术
    3. 王伟,余金昊,方志明,李小春,李琦,陈向军,王亮. 基于体积应变的煤体渗透率模型及影响参数分析. 煤炭学报. 2024(06): 2741-2756 . 百度学术
    4. 姬红英,王文博,辛亚军,张东营,高忠国,任金武. 水力耦合下煤样声发射分形-渗透率模型及试验研究. 煤炭学报. 2024(08): 3381-3398 . 百度学术
    5. 龙航,林海飞,马东民,李树刚,季鹏飞,白杨. 基于弹-塑性变形的含瓦斯煤体渗透率动态演化模型. 煤炭学报. 2024(09): 3859-3871 . 百度学术
    6. 王刚,王铭震,肖智勇,孙小翔,贾文雯,姜枫,郑程程. 考虑基质吸附变形特性的煤岩渗透率演化研究. 煤炭科学技术. 2024(12): 193-203 . 百度学术
    7. 刘辉辉,于斌,林柏泉,夏彬伟,李全贵,邹全乐. 原位煤层抽采多重应力演化规律及对渗透率控制机制. 岩石力学与工程学报. 2023(04): 906-917 . 百度学术
    8. 孔德森,赵明凯,时健,滕森. 基于分形维数特征的岩石介质气-水相对渗透率预测模型研究. 岩土工程学报. 2023(07): 1421-1429 . 本站查看
    9. 亓宪寅,王胜伟,耿殿栋,付鹏. 基于等效裂隙开度的层理煤岩渗透率模型研究. 煤矿安全. 2023(08): 1-11 . 百度学术
    10. 荣腾龙,刘克柳,周宏伟,关灿,陈岩,任伟光. 采动应力下深部煤体渗透率演化规律研究. 岩土工程学报. 2022(06): 1106-1114 . 本站查看
    11. 王刚,肖智勇,王长盛,蒋宇静,于俊红. 基于非平衡状态的煤层中气体运移规律研究. 岩土工程学报. 2022(08): 1512-1520 . 本站查看
    12. 林海飞,龙航,李树刚,赵鹏翔,严敏,白杨,肖通,秦澳立. 煤体瓦斯吸附解吸与压裂渗流全过程真三轴试验系统研发与应用. 岩石力学与工程学报. 2022(S2): 3294-3305 . 百度学术
    13. 程先振,陈连军,栾恒杰,王春光,蒋宇静. 基质-裂隙相互作用对煤渗透率的影响:考虑煤的软化. 岩土工程学报. 2022(10): 1890-1898 . 本站查看

    其他类型引用(6)

计量
  • 文章访问数:  351
  • HTML全文浏览量:  3
  • PDF下载量:  754
  • 被引次数: 19
出版历程
  • 收稿日期:  2014-04-13
  • 发布日期:  2014-12-25

目录

    /

    返回文章
    返回