• 全国中文核心期刊
  • 中国科技核心期刊
  • 美国工程索引(EI)收录期刊
  • Scopus数据库收录期刊

多层堤基中土层结构变化对管涌影响的试验研究

陈建生, 张华, 王霜, 何文政, 袁克龙

陈建生, 张华, 王霜, 何文政, 袁克龙. 多层堤基中土层结构变化对管涌影响的试验研究[J]. 岩土工程学报, 2014, 36(12): 2213-2219. DOI: 10.11779/CJGE201412008
引用本文: 陈建生, 张华, 王霜, 何文政, 袁克龙. 多层堤基中土层结构变化对管涌影响的试验研究[J]. 岩土工程学报, 2014, 36(12): 2213-2219. DOI: 10.11779/CJGE201412008
CHEN Jian-sheng, ZHANG Hua, WANG Shuang, HE Wen-zheng, YUAN Ke-long. Experimental researches on effect of foundation structure on piping in multilayer embankment[J]. Chinese Journal of Geotechnical Engineering, 2014, 36(12): 2213-2219. DOI: 10.11779/CJGE201412008
Citation: CHEN Jian-sheng, ZHANG Hua, WANG Shuang, HE Wen-zheng, YUAN Ke-long. Experimental researches on effect of foundation structure on piping in multilayer embankment[J]. Chinese Journal of Geotechnical Engineering, 2014, 36(12): 2213-2219. DOI: 10.11779/CJGE201412008

多层堤基中土层结构变化对管涌影响的试验研究  English Version

基金项目: 江苏省普通高校研究生科研创新计划项目(CXZZ13_0243)
详细信息
    作者简介:

    陈建生(1955- ),男,江苏泗阳人,教授,博士生导师,主要从事同位素水文学、渗流理论与示踪探测技术的研究。E-mail: jschen@hhu.edu.cn。

    通讯作者:

    张华

Experimental researches on effect of foundation structure on piping in multilayer embankment

  • 摘要: 不同土层结构的堤基,管涌的发生和发展情形不同。利用室内试验,通过改变下伏砂层内夹砂层的级配组成,对3种不同夹砂层的多层堤基进行了管涌破坏过程的模拟,研究了不同颗粒级配组成的夹砂层对管涌发生及发展过程和机理的影响。试验结果表明,多层堤基夹砂层均为细砂时,承受的水压力较大,临界水力梯度较高,一旦发生管涌破坏后其渗透流量、涌砂量以及破坏范围都比较大,所以此类堤基发生管涌破坏时具有一定的突然性和剧烈性,应及早采取防治措施;夹砂层均为粗砂时,管涌破坏时的情形与双层堤基类似,管涌破坏的范围局限于砂砾层顶部,破坏深度有限;夹砂层为细砾时,发生管涌破坏的临界水力梯度较小,管涌破坏程度逐步增加且破坏速度较快,由于涌砂量较大容易使堤基产生明显的渗透变形。
    Abstract: The situations of the occurrence and development of piping are different because of different soil layer structures of embankment. Based on the laboratory tests, the destruction processes of piping of multilayer embankment with three kinds of different sand layers are simulated. By changing the grain-size distribution of the underlying sand layers, the effect of sand layers with different grain-size distributions on the mechanism and process of the occurrence and development of piping is analyzed. The test results show that when the sand layer of multilayer embankment is fine sand, it bears larger water pressure, and the critical hydraulic gradient is high. Once piping occurs, the seepage discharge, erosion mass and damage range are large. The piping failure of this kind of embankment is sudden and dramatic, and prevention measures should be taken as early as possible. When the sand layer is coarse sand, the situation of piping is like that of sand gravel layer. The damage scope of piping is confined to the top of the gravel layer, and the damage depth is limited. When the sand layer is fine gravel, the critical hydraulic gradient is small, the damage extent gradually increases, and the speed of piping is quick because large amount of erosion embankment can generate obvious seepage deformation.
  • [1] 毛昶熙, 段祥宝, 毛佩郁, 等. 堤防渗流与防冲[M]. 中国水利水电出版社, 2003. (MAO Chang-xi, DUAN Xiang-bao, MAO Pei-yu, et al. Seepage of dikes & scour defence[M]. Beijing: China Water Power Press, 2003. (in Chinese))
    [2] 罗玉龙, 速宝玉, 盛金昌, 等. 对管涌机制的新认识[J]. 岩土工程学报, 2011, 33(12): 1895-1902. (LUO Yu-long, SU Bao-yu, SHENG Jin-chang, et al. New understandings on piping mechanism[J]. Chinese Journal of Geotechnical Engineering, 2011, 33(12): 1895-1902. (in Chinese))
    [3] 刘 杰. 土的渗透稳定与渗流控制[M]. 北京: 水利电力出版社, 1992. (LIU Jie. Penetration stability and penetration control of the soil[M]. Beijing: Water Resources and Electric Power Press, 1991. (in Chinese))
    [4] 陈建生, 李兴文, 赵维炳. 堤防管涌产生集中渗漏通道机理与探测方法研究[J]. 水利学报, 2000, 31(9): 48-54. (CHEN Jian-sheng, LI Xing-wen, ZHAO Wei-bing. Study on piping leakage mechanism[J]. Journal of Hydraulic Engineering, 2000, 31(9): 48-54. (in Chinese))
    [5] 毛昶熙, 段祥宝, 蔡金傍, 等. 堤基渗流管涌发展的理论分析[J]. 水利学报, 2004, 35(12): 46-50. (MAO Chang-xi, DUAN Xiang-bao, CAI Jin-bang, et al. Theoretical analysis of piping development of levee foundation[J]. Journal of Hydraulic Engineering, 2004, 35(12): 46-50. (in Chinese))
    [6] 刘 杰, 谢定松, 崔亦昊. 江河大堤双层地基渗透破坏机理模型试验研究[J]. 水利学报, 2008, 39(11): 1211-1220. (LIU Jie, XIE Ding-song, CUI Yi-hao. Failure mechanism of seepage in levees with double-layer foundation[J]. Journal of Hydraulic Engineering, 2008, 39(11): 1211-1220. (in Chinese))
    [7] 倪小东, 王 媛, 王 飞. 管涌的砂槽试验研究及颗粒流模拟[J]. 四川大学学报, 2009, 41(6): 51-57. (NI Xiao-dong, WANG Yuan, WANG Fei. Study on piping by sand-bank model and simulation by PFC 3D [J]. Journal of Sichuan University, 2009, 41(6): 51-57. (in Chinese))
    [8] 周晓杰, 介玉新, 李广信. 基于渗流和管流耦合的管涌数值模拟[J]. 岩土力学, 2009, 30(10): 3154-3158. (ZHOU Xiao-jie, JIE Yu-xin, LI Guang-xin. Numerical simulation of piping based on coupling seepage and pipe flow[J]. Rock and Soil Mechanics, 2009, 30(10): 3154-3158. (in Chinese))
    [9] 姚秋玲, 丁留谦. 单层和双层堤基管涌砂槽模型试验研究 [J].水利水电技术, 2007, 38(2): 31-36. (YAO Qiu-ling, DING Liu-qian. Experimental studies on piping in single-and two-stratum dike foundations[J]. Water Resources and Hydropower Engineering, 2007, 38(2): 31-36. (in Chinese))
    [10] 梁 越, 陈建生, 陈 亮, 等. 双层堤基管涌发生发展的试验模拟与分析[J]. 岩土工程学报, 2011, 33(4): 624-629. (LIANG Yue, CHEN Jian-sheng, CHEN Liang, et al. Laboratory tests and analysis on piping in two-stratum dike foundation[J]. Chinese Journal of Geotechnical Engineering, 2011, 33(4): 624-629. (in Chinese))
    [11] 丁留谦, 姚秋玲, 孙东亚, 等. 三层堤基管涌砂槽模型试验研究[J]. 水利水电技术, 2007, 38(2): 19-22. (DING Liu-qian, YAO Qiu-ling, SUN Dong-ya, et al. Experimental studies on piping development in three-stratum dike foundations[J]. Water Resources and Hydropower Engineering, 2007, 38(2): 19-22. (in Chinese))
    [12] 王 霜, 陈建生, 黄德文, 等. 土层结构对管涌发展影响的试验研究[J]. 岩土工程学报, 2013, 35(12): 2334-2341. (WANG Shuang, CHEN Jian-sheng, HUANG De-wen, et al. Experimental study on piping development considering effect of foundation structure[J]. Chinese Journal Geotechnical Engineering, 2013, 35(12): 2334-2341. (in Chinese))
    [13] 刘 杰, 谢定松, 崔亦昊. 江河大堤堤基砂砾石层管涌破坏危害性试验研究[J]. 岩土工程学报, 2009, 31(8): 1188-1191. (LIU Jie, XIE Ding-song, CUI Yi-hao. Destructive tests on piping failure of sandy gravel layer of river dikes[J]. Chinese Journal of Geotechnical Engineering, 2009, 31(8): 1188-1191. (in Chinese))
  • 期刊类型引用(13)

    1. 肖智勇,孙小翔,王刚,王铭震,贾文雯,姜枫,郑程程. 气体压差影响下的煤渗透率非平衡演化全过程模型. 岩土工程学报. 2025(02): 355-364 . 本站查看
    2. 杨希培,邢玉强. 采动应力作用下煤岩渗流场演化规律数值模拟. 煤矿安全. 2024(04): 33-41 . 百度学术
    3. 王伟,余金昊,方志明,李小春,李琦,陈向军,王亮. 基于体积应变的煤体渗透率模型及影响参数分析. 煤炭学报. 2024(06): 2741-2756 . 百度学术
    4. 姬红英,王文博,辛亚军,张东营,高忠国,任金武. 水力耦合下煤样声发射分形-渗透率模型及试验研究. 煤炭学报. 2024(08): 3381-3398 . 百度学术
    5. 龙航,林海飞,马东民,李树刚,季鹏飞,白杨. 基于弹-塑性变形的含瓦斯煤体渗透率动态演化模型. 煤炭学报. 2024(09): 3859-3871 . 百度学术
    6. 王刚,王铭震,肖智勇,孙小翔,贾文雯,姜枫,郑程程. 考虑基质吸附变形特性的煤岩渗透率演化研究. 煤炭科学技术. 2024(12): 193-203 . 百度学术
    7. 刘辉辉,于斌,林柏泉,夏彬伟,李全贵,邹全乐. 原位煤层抽采多重应力演化规律及对渗透率控制机制. 岩石力学与工程学报. 2023(04): 906-917 . 百度学术
    8. 孔德森,赵明凯,时健,滕森. 基于分形维数特征的岩石介质气-水相对渗透率预测模型研究. 岩土工程学报. 2023(07): 1421-1429 . 本站查看
    9. 亓宪寅,王胜伟,耿殿栋,付鹏. 基于等效裂隙开度的层理煤岩渗透率模型研究. 煤矿安全. 2023(08): 1-11 . 百度学术
    10. 荣腾龙,刘克柳,周宏伟,关灿,陈岩,任伟光. 采动应力下深部煤体渗透率演化规律研究. 岩土工程学报. 2022(06): 1106-1114 . 本站查看
    11. 王刚,肖智勇,王长盛,蒋宇静,于俊红. 基于非平衡状态的煤层中气体运移规律研究. 岩土工程学报. 2022(08): 1512-1520 . 本站查看
    12. 林海飞,龙航,李树刚,赵鹏翔,严敏,白杨,肖通,秦澳立. 煤体瓦斯吸附解吸与压裂渗流全过程真三轴试验系统研发与应用. 岩石力学与工程学报. 2022(S2): 3294-3305 . 百度学术
    13. 程先振,陈连军,栾恒杰,王春光,蒋宇静. 基质-裂隙相互作用对煤渗透率的影响:考虑煤的软化. 岩土工程学报. 2022(10): 1890-1898 . 本站查看

    其他类型引用(6)

计量
  • 文章访问数:  317
  • HTML全文浏览量:  4
  • PDF下载量:  347
  • 被引次数: 19
出版历程
  • 收稿日期:  2014-05-08
  • 发布日期:  2014-12-25

目录

    /

    返回文章
    返回