Method for calculating loosening earth pressure during construction of shield tunnels
-
摘要: 在盾构隧道施工中,因管片支护和注浆填充,隧道拱顶土体位移受限制,土拱效应不完全发挥,土体剪应力小于其抗剪强度,使得Terzaghi松动土压力理论不适用于盾构隧道。针对这一情况,在Handy理论基础上推导了土的侧压力系数计算公式,得出侧压力系数的变化规律,其值与主应力旋转角度相关,其大小在主动土压力系数和被动土压力系数之间变化;并认为土拱效应的发挥和隧道拱顶位移相关,据此,在Terzaghi松动土压力理论基础上推导了一种可以考虑地层损失和管片刚度的松动土压力计算公式;并通过对土拱高度的讨论,提出一种简化的隧道施工扰动范围判断方法。Abstract: Due to the limitations on vault displacement, such as lining segment support and synchronous grouting, the soil arching effect only plays partial function during construction of shield tunnels, and the shear stress of soil is less than its shear strength. Terzaghi's loosening earth pressure theory cannot be used for this case. To solve this problem, a method for calculating lateral pressure coefficient is deduced based on the Handy's theory. The results show that the lateral pressure coefficient is associated with the rotation angle of the principal stress, and its value varies between coefficients of active and passive earth pressures. Subsequently, the development of soil arching effect is related to the vault displacement of the tunnels. Accordingly, a computational formula for loosening earth pressure is proposed considering the ground loss and the stiffness of the segment based on the Terzaghi's theory. Finally, a simplified method for predicting construction disturbance scope of tunnels is put forward by studying soil arching height.
-
[1] TERZAGHI K. Stress distribution in dry and in saturated sand above a yielding trap-door[C]// Proceedings of First International Conference on Soil Mechanics and Foundation Engineering. Cambridge, Massachusetts, 1936: 307-311. [2] 朱 伟, 钟小春, 加 瑞. 盾构隧道垂直土压力松动效应的颗粒流模拟[J]. 岩土工程学报, 2008, 30(5): 750-754. (ZHU Wei, ZHONG Xiao-chun, JIA Rui. Simulation on relaxation effect of vertical earth pressure for shield tunnels by particle flow code[J]. Chinese Journal of Geotechnical Engineering, 2008, 30(5): 750-754. (in Chinese)) [3] KEZDI A. Lateral earth pressure[M]// Foundation Engineering Handbook, WINTERKORN H F, FANG H Y, ed. New York: Van Nostrand Reinhold Co., 1986: 147-220. [4] TIEN H J. A literature study of the arching effect[D]. Taiwan: Taiwan University, 1996. [5] HANDY R L. The arch in soil arching[J]. Journal of Geotechnical Engineering, 1985, 111(3): 302-317. [6] GIROUND J P, BONAPARTE R, BEECH J F, et al. Design of soil layer-geosynthetic systems overlying voids[J]. Geo- textiles and Geomembranes, 1990, 9(1): 11-50. [7] 陈若曦, 朱 斌, 陈云敏, 等. 基于主应力轴旋转理论的修正Terzaghi 松动土压力[J]. 岩土力学, 2010, 31(5): 1402-1406. (CHEN Ruo-xi, ZHU Bin, CHEN Yun-min, et al. Modified Terzaghi loozening earth pressure based on theory of main stress axes rotation[J]. Rock and Soil Mechanics, 2010, 31(5): 1402-1406. (in Chinese)) [8] 武 军, 廖少明, 张 迪. 基于颗粒流椭球体理论的隧道极限松动区与松动土压力[J]. 岩土工程学报, 2013, 35(4): 714-721. (WU Jun, LIAO Shao-ming, ZHANG Di. Loosening zone and earth pressure around tunnels in sandy soils based on ellipsoid theory of particle flows[J]. Chinese Journal of Geotechnical Engineering, 2013, 35(4): 714-721. (in Chinese)) [9] 王 非, 缪林昌. 落水洞上覆路堤土工加筋设计新方法[J].东南大学学报, 2009, 39(6): 1217-1221. (WANG Fei, MIAO Lin-chang. New designmethod of geosynthetic- reinforced embankment over sinkholes[J]. Journal of Southeast University:Natural Science, 2009, 39(6): 1217-1221. (in Chinese)) [10] 吕伟华, 缪林昌, 王 非. 基于不完全土拱效应的土工格栅加固机制与设计方法[J]. 岩石力学与工程学报, 2012, 31(3): 632-639. (LÜ Wei-hua, MIAO Lin-chang, WANG Fei. Mechanism of geogrid reinforcement based on pratially developed soil arch effect and design method[J]. Chinese Journal of Rock Mechanics and Engineering, 2012, 31(3): 632-639. (in Chinese)) [11] 张凤祥, 朱合华, 傅德明. 盾构隧道[M]. 北京: 人民交通出版社, 2004. (ZHANG Feng-xiang, ZHU He-hua, FU De-ming. Shield tunnel[M]. Beijing: China Communications Press, 2003. (in Chinese)) [12] TERZAGHI K. Theoretical soil mechanics[M]. New York: John Wiley and Sons, 1943: 66-76. [13] WARD W H. Ground support for tunnels in weak rocks[J]. Géotechnique, 1978(2): 133-170. -
期刊类型引用(17)
1. 义扬,肖映雄,余科. 任意多边形骨料混凝土细观模型的建立与数值模拟. 山东大学学报(工学版). 2025(01): 97-107 . 百度学术
2. 朱艳贵. 不等向固结时混合土剪切行为的离散元分析. 工业建筑. 2024(03): 167-173 . 百度学术
3. 李冠鹏,陈占扬,李洪博,武海荣,黄鹏,刘子墨,杜文韬. 基于三维细观的混凝土靶板侵彻仿真研究. 河南城建学院学报. 2024(06): 48-55 . 百度学术
4. 王泽华,李昺,邢磊,龚文平. 基于PFC~(3D)的滑坡与建筑物相互作用过程研究. 安全与环境工程. 2023(01): 107-118+191 . 百度学术
5. 杨忠平,刘浩宇,李进,李绪勇,刘新荣. 土石混合料–基岩接触面剪切力学特性及剪切带变形特征研究. 岩石力学与工程学报. 2023(02): 292-306 . 百度学术
6. 朱艳贵. 考虑粗颗粒真实形状的混合土不排水剪切特性离散元研究. 公路交通科技. 2023(02): 28-35 . 百度学术
7. 茹晓军. 考虑细观特征的土石混合体边坡破坏机制分析. 铁道建筑技术. 2023(04): 1-4+10 . 百度学术
8. 贾聿颉,李冬冬. 基于筛分试验的土石混合体三维数值建模方法研究. 华北水利水电大学学报(自然科学版). 2023(02): 97-103 . 百度学术
9. 张宏虎,白伟,孙明祥,邓涛. 闽东地区含砾花岗岩残积土的细观剪切特性研究. 水利与建筑工程学报. 2022(02): 48-53+191 . 百度学术
10. 吴尚杰. 粉土填料细观剪切特性的颗粒离散元数值模拟研究. 水利与建筑工程学报. 2022(03): 129-133+175 . 百度学术
11. 李泽闯,刘志斌,程培峰,张昊,蔡启源. 基于颗粒流方法的含粗粒滑带土宏细观力学特性. 辽宁工程技术大学学报(自然科学版). 2022(02): 121-129 . 百度学术
12. 胡峰,李志清,刘琪,胡瑞林. 土石混合体的剪应力波动和跌落行为机制. 水文地质工程地质. 2021(03): 90-101 . 百度学术
13. 杨忠平,李进,蒋源文,胡元鑫,赵亚龙. 含石率对土石混合体–基岩界面剪切力学特性的影响. 岩土工程学报. 2021(08): 1443-1452 . 本站查看
14. 金扬国. 交通荷载下碎石土回填路基沉降分析. 安徽建筑. 2021(11): 143-144 . 百度学术
15. 杨忠平,蒋源文,李诗琪,李进,胡元鑫. 土石混合体—基岩界面剪切力学特性试验研究. 岩土工程学报. 2020(10): 1947-1954 . 本站查看
16. 俞隽,孙洪浩,郑霄阳. 块石含量对土石混合体剪切力学特性的影响. 南通大学学报(自然科学版). 2020(03): 83-89 . 百度学术
17. 董辉,朱宪明,陈立,罗正东,蒋秀姿. 基于阻抗谱的土石体电阻相似性孔隙特征研究. 仪器仪表学报. 2020(11): 119-128 . 百度学术
其他类型引用(25)