• 全国中文核心期刊
  • 中国科技核心期刊
  • 美国工程索引(EI)收录期刊
  • Scopus数据库收录期刊

饱和土体固结压缩和蠕变的热力学本构理论及模型分析

陈志辉, 程晓辉

陈志辉, 程晓辉. 饱和土体固结压缩和蠕变的热力学本构理论及模型分析[J]. 岩土工程学报, 2014, 36(3): 489-498. DOI: 10.11779/CJGE201403012
引用本文: 陈志辉, 程晓辉. 饱和土体固结压缩和蠕变的热力学本构理论及模型分析[J]. 岩土工程学报, 2014, 36(3): 489-498. DOI: 10.11779/CJGE201403012
CHEN Zhi-hui, CHENG Xiao-hui. Thermodynamic constitutive theory and analysis of consolidation compression and creep of saturated soils[J]. Chinese Journal of Geotechnical Engineering, 2014, 36(3): 489-498. DOI: 10.11779/CJGE201403012
Citation: CHEN Zhi-hui, CHENG Xiao-hui. Thermodynamic constitutive theory and analysis of consolidation compression and creep of saturated soils[J]. Chinese Journal of Geotechnical Engineering, 2014, 36(3): 489-498. DOI: 10.11779/CJGE201403012

饱和土体固结压缩和蠕变的热力学本构理论及模型分析  English Version

基金项目: 清华大学-剑桥大学-麻省理工学院低碳能源大学联盟(LCEUA)种子基金项目(2010LC002)
详细信息
    作者简介:

    陈志辉(1986- ),男,四川金堂人,硕士研究生。E-mail: chenzh_luckdog@163.com。

  • 中图分类号: TU43

Thermodynamic constitutive theory and analysis of consolidation compression and creep of saturated soils

  • 摘要: 岩土热力学模型(thermodynamic soil model,TSM)是基于颗粒固体的非平衡态热力学理论,建立的一种崭新的描述岩土力学问题的统一理论模型。该模型引入“颗粒熵运动”和“弹性弛豫”,对土体颗粒层次的耗散机制进行了合理地考虑,这些使得模型能够更深入描述土体的变形和能量耗散机理,从而能够在统一理论框架中描述岩土体复杂多变的物理力学行为。基于该理论模型,研究了饱和土体的固结压缩和蠕变问题,分析了加载速率、应力/应变路径和非单调荷载等因素的影响规律。模拟结果表明:模型具有描述复杂条件下的饱和土体的固结压缩和蠕变特性的能力,具有较高的理论和工程应用价值。
    Abstract: The thermodynamic soil model (TSM) is a new unified theoretical model for the analysis of geotechnical engineering problems. It is based on the non-equilibrium thermodynamic theory of granular solids. The granular entropy and the elastic relaxation are introduced for describing the energy dissipation mechanism on particle level, which allows the model to simulate the various physical properties of the soils, including the overall deformation and the energy dissipation. Based on the TSM, the influence of strain rates, stress/strain paths and non-monotonic loads on the consolidation and creep behaviors of saturated soils are studied in the paper. The results show that the theoretical model is able to describe the consolidation and creep of saturated soils under complex conditions, and it is of high theoretical reference value for geotechnical engineering field.
  • [1] BJERRUM L. Engineering geology of Norwegian normally consolidation marine clays as related to the settlement of building[J]. Géotechnique, 1967, 17(12): 81-118.
    [2] GRAHAM J, CROOKS J H A, BELL A L. Time effects on the stress-strain behavior of natural soft clays[J]. Géotechnique, 1983, 33(3): 327-340.
    [3] LEROUEIL S. et al. Stress-strain-strain rate relation for the compressibility of sensitive natural clays[J]. Géotechnique, 1985, 35(2): 159-180.
    [4] 曾玲玲, 等. 应力路径对天然沉积土压缩特性影响的试验研究[J]. 岩土工程学报, 2012, 34(7): 1250-1255. (ZENG Ling-ling, et al. Experimental study on different compression behaviors of natural clayscaused by various stress paths[J]. Chinese Journal of Geotechnical Engineering, 2012, 34(7): 1250-1255. (in Chinese))
    [5] GHANTOUS I B. Prediction of in situ consolidation parameters of boston blue clay[D]. Boston: Massachusetts Institute of Technology, 1982.
    [6] MESRI G, STARK T D, AJLOUNI M A. Secondary compression of peat with or without surcharging[J]. Journal of Geotechnical and Geoenvironmental Engineering, ASCE, 1997, 123(5): 411-421.
    [7] 龙建辉, 等. 黄土滑坡滑带土的蠕变特性[J]. 岩土工程学报, 2010, 32(7): 1023-1028. (LONG Jian-hui, et al. Creep property of soil in sliding zone of loess landslide[J]. Chinese Journal of Geotechnical Engineering, 2010, 32(7): 1023-1028. (in Chinese))
    [8] BORJA R I, KAVAZANJIAN E. A constitutive model for the stress-strain-time behabiour of “wet” clays[J]. Géotechnique, 1985, 35(2): 283-298.
    [9] 詹美礼, 钱家欢, 陈绪禄. 软土流变特性试验及流变模型[J]. 岩土工程学报, 1993, 15(3): 54-62. (ZHAN Mei-li, QIAN Jia-huan, CHEN Xu-lu. Tests on rheological behavior of soft soil and rheologic model[J]. Chinese Journal of Geotechnical Engineering, 1993, 15(3): 54-62. (in Chinese))
    [10] GARLANGER J E. The consolidation of soils exhibiting creep under constant effective stress[J]. Géotechnique, 1972, 22(1): 71-78.
    [11] CHRISTIE I F, TONKS D M. Developments in the time lines theory of consolidation[C]// The 11th International Conference on Soil Mechanics and Foundation Engineering. San Francisco, 1985, 2: 423-426.
    [12] YIN J H, GRAHAM J. Viscous-elastic-plastic modelling of one-dimensional time-dependent behaviour of clays[J]. Canadian Geotechnical Journal, 1989, 26(2): 199-209.
    [13] YIN J H, GRAHAM J. Equivalent times and one- dimensional elastic viscoplastic modelling of time-dependent stress-strain behaviour of clays[J]. Canadian Geotechnical Journal, 1994, 31(1): 42-52.
    [14] DEN HAAN E J. A compression model for non-brittle soft clays and peat[J]. Géotechnique, 1996, 46(1): 1-16.
    [15] 沈珠江. 软土工程特性和软土地基设计[J]. 岩土工程学报, 1998, 20(1): 100-111. (SHEN Zhu-jiang. Engineering properties of soft soils and design of soft ground[J]. Chinese Journal of Geotechnical Engineering, 1998, 20(1): 100-111. (in Chinese))
    [16] 张超杰, 王立忠, 陈云敏. 一维弹黏塑性固结模型研究[J]. 水利学报, 2005(5): 16-23. (ZHANG Chao-jie, WANG Li-zhong, CHEN Yun-min. Study on one-dimensional elastic visco-plastic consolidation model[J]. Journal of Hydraulic Engineering, 2005(5): 16-23. (in Chinese))
    [17] VERMEER P A, NEHER H P. A soft soil model that accounts for creep[C]// Proceedings of the International Symposium, “Beyond 2000 in Computational Geotechnics”. Amsterdam: Balkema, 249-261.
    [18] ADACHI T, OKA F. Constitutive equation for normally consolidated clays based on elasto-viscoplasticity[J]. Soils and Foundations, 1982, 22(4): 57-70.
    [19] 王立忠, 但汉波. K0固结软黏土的弹黏塑性本构模型[J]. 岩土工程学报, 2007, 29(9): 1344-1354. (WANG Li-zhong, DAN Han-bo. Elastic viscoplastic constitutive model for K0-consolidated soft clays[J]. Chinese Journal of Geotechnical Engineering, 2007, 29(9): 1344-1354. (in Chinese))
    [20] LANCELLOTTA R, PREZIOSI L. A General nonlinear mathematical model for soil consolidation problems[J]. International Journal of Engineering Science, 1997, 35(10): 1045-1063.
    [21] 胡亚元. 多重耗散函数率无关塑性力学在黏土模型中的应用[J]. 岩土力学, 2005 , 26(增刊1): 9-12. (HU Ya-yuan. Application of multiple dissipation potentials functions rate-independent plasticity model with applications to clay[J]. Rock and Soil Mechanics, 2005, 26(S1): 9-12.(in Chinese))
    [22] 蔡国庆. 基于多孔介质理论的土体多场耦合模型及其在非饱和土本构建模中的应用[D]. 北京: 北京交通大学, 2012. (CAI Guo-qing. Multi-field coupled model for soils based on porous media theory and its application in modelling the constitutive behaviour of unsaturated soils[D]. Beijing: Beijing Jiaotong University, 2012. (in Chinese))
    [23] 孔 亮, COLLINS I F. 模拟土体本构的热力学方法[J]. 岩土力学, 2008, 29(7): 1732-1740. (KONG Liang, COLLINS I F. Thermomechanical approach to modeling- constitutive behaviors of geomaterials[J]. Rock and Soil Mechanics, 2008, 29(7): 1732-1740. (in Chinese))
    [24] 胡亚元. 准塑性的黏弹性模型在黏土中的应用[J]. 岩土工程学报, 2009, 31(3): 353-360. (HU Ya-yuan. Application of plastic-like visco-elastic model to clay[J]. Chinese Journal of Geotechnical Engineering, 2009, 31(3): 353-360. (in Chinese))
    [25] JIANG Y M, LIU M. Granular solid hydrodynamics[J]. Granular Matter, 2009, 11(3): 139-156.
    [26] 张志超, 程晓辉. 饱和土非等温固结和不排水剪切的热力学本构模型[J]. 岩土工程学报, 2013, 35(7): 1297-1306. (ZHANG Zhi-chao, CHENG Xiao-hui. A thermodynamic constitutive model for non-isothermal consolidation and undrained shear behaviors of saturated soils[J]. Chinese Journal of Geotechnical Engineering, 2013, 35(7): 1297-1306. (in Chinese))
    [27] ZHANG Z C, CHENG X H. A fully coupled THM model based on a non-equilibrium thermodynamic approach and its application[J]. International Journal for Numerical and Analytical Methods in Geomechanics, in press.
    [28] DE GROOT S R, MAZUR P. Non-equilibrium thermodynamics[M]. New York: Dover Publications, 1984.
    [29] ONSAGER L. Reciprocal relations in irreversible processes[J]. Physical Review, 1931, 37(2): 405-426.
    [30] JIANG Y, LIU M. The physics of granular mechanics[M]// Mechanics of Natural Solids. Berlin: Springer Berlin Heidelberg, 2009: 27-46.
    [31] SHEAHAN T C. An Experimental study of the time-dependent undrained shear behavior of resedimented clay using automated stress path triaxial equipment[D]. Boston: Massachusetts Institute of Technology, 1991.
    [32] HORVÁTH V K, JÁNOSI I M, VELLA P J. Anomalous density dependence of static friction in sand[J]. Physical Review, 1996, 54(2): 2005-2009.
    [33] 张志超. 饱和岩土体多场耦合热力学本构理论及模型研究[D]. 北京: 清华大学, 2013. (ZHANG Zhi-chao. Research on multi-field coupling thermodynamic constitutive theory and model for saturated geomaterials[D]. Beijing: Tsinghua University, 2013. (in Chinese))
计量
  • 文章访问数:  402
  • HTML全文浏览量:  3
  • PDF下载量:  410
  • 被引次数: 0
出版历程
  • 收稿日期:  2013-07-18
  • 发布日期:  2014-03-19

目录

    /

    返回文章
    返回