• 全国中文核心期刊
  • 中国科技核心期刊
  • 美国工程索引(EI)收录期刊
  • Scopus数据库收录期刊
CHEN Zhi-hui, CHENG Xiao-hui. Thermodynamic constitutive theory and analysis of consolidation compression and creep of saturated soils[J]. Chinese Journal of Geotechnical Engineering, 2014, 36(3): 489-498. DOI: 10.11779/CJGE201403012
Citation: CHEN Zhi-hui, CHENG Xiao-hui. Thermodynamic constitutive theory and analysis of consolidation compression and creep of saturated soils[J]. Chinese Journal of Geotechnical Engineering, 2014, 36(3): 489-498. DOI: 10.11779/CJGE201403012

Thermodynamic constitutive theory and analysis of consolidation compression and creep of saturated soils

More Information
  • Received Date: July 18, 2013
  • Published Date: March 19, 2014
  • The thermodynamic soil model (TSM) is a new unified theoretical model for the analysis of geotechnical engineering problems. It is based on the non-equilibrium thermodynamic theory of granular solids. The granular entropy and the elastic relaxation are introduced for describing the energy dissipation mechanism on particle level, which allows the model to simulate the various physical properties of the soils, including the overall deformation and the energy dissipation. Based on the TSM, the influence of strain rates, stress/strain paths and non-monotonic loads on the consolidation and creep behaviors of saturated soils are studied in the paper. The results show that the theoretical model is able to describe the consolidation and creep of saturated soils under complex conditions, and it is of high theoretical reference value for geotechnical engineering field.
  • [1]
    BJERRUM L. Engineering geology of Norwegian normally consolidation marine clays as related to the settlement of building[J]. Géotechnique, 1967, 17(12): 81-118.
    [2]
    GRAHAM J, CROOKS J H A, BELL A L. Time effects on the stress-strain behavior of natural soft clays[J]. Géotechnique, 1983, 33(3): 327-340.
    [3]
    LEROUEIL S. et al. Stress-strain-strain rate relation for the compressibility of sensitive natural clays[J]. Géotechnique, 1985, 35(2): 159-180.
    [4]
    曾玲玲, 等. 应力路径对天然沉积土压缩特性影响的试验研究[J]. 岩土工程学报, 2012, 34(7): 1250-1255. (ZENG Ling-ling, et al. Experimental study on different compression behaviors of natural clayscaused by various stress paths[J]. Chinese Journal of Geotechnical Engineering, 2012, 34(7): 1250-1255. (in Chinese))
    [5]
    GHANTOUS I B. Prediction of in situ consolidation parameters of boston blue clay[D]. Boston: Massachusetts Institute of Technology, 1982.
    [6]
    MESRI G, STARK T D, AJLOUNI M A. Secondary compression of peat with or without surcharging[J]. Journal of Geotechnical and Geoenvironmental Engineering, ASCE, 1997, 123(5): 411-421.
    [7]
    龙建辉, 等. 黄土滑坡滑带土的蠕变特性[J]. 岩土工程学报, 2010, 32(7): 1023-1028. (LONG Jian-hui, et al. Creep property of soil in sliding zone of loess landslide[J]. Chinese Journal of Geotechnical Engineering, 2010, 32(7): 1023-1028. (in Chinese))
    [8]
    BORJA R I, KAVAZANJIAN E. A constitutive model for the stress-strain-time behabiour of “wet” clays[J]. Géotechnique, 1985, 35(2): 283-298.
    [9]
    詹美礼, 钱家欢, 陈绪禄. 软土流变特性试验及流变模型[J]. 岩土工程学报, 1993, 15(3): 54-62. (ZHAN Mei-li, QIAN Jia-huan, CHEN Xu-lu. Tests on rheological behavior of soft soil and rheologic model[J]. Chinese Journal of Geotechnical Engineering, 1993, 15(3): 54-62. (in Chinese))
    [10]
    GARLANGER J E. The consolidation of soils exhibiting creep under constant effective stress[J]. Géotechnique, 1972, 22(1): 71-78.
    [11]
    CHRISTIE I F, TONKS D M. Developments in the time lines theory of consolidation[C]// The 11th International Conference on Soil Mechanics and Foundation Engineering. San Francisco, 1985, 2: 423-426.
    [12]
    YIN J H, GRAHAM J. Viscous-elastic-plastic modelling of one-dimensional time-dependent behaviour of clays[J]. Canadian Geotechnical Journal, 1989, 26(2): 199-209.
    [13]
    YIN J H, GRAHAM J. Equivalent times and one- dimensional elastic viscoplastic modelling of time-dependent stress-strain behaviour of clays[J]. Canadian Geotechnical Journal, 1994, 31(1): 42-52.
    [14]
    DEN HAAN E J. A compression model for non-brittle soft clays and peat[J]. Géotechnique, 1996, 46(1): 1-16.
    [15]
    沈珠江. 软土工程特性和软土地基设计[J]. 岩土工程学报, 1998, 20(1): 100-111. (SHEN Zhu-jiang. Engineering properties of soft soils and design of soft ground[J]. Chinese Journal of Geotechnical Engineering, 1998, 20(1): 100-111. (in Chinese))
    [16]
    张超杰, 王立忠, 陈云敏. 一维弹黏塑性固结模型研究[J]. 水利学报, 2005(5): 16-23. (ZHANG Chao-jie, WANG Li-zhong, CHEN Yun-min. Study on one-dimensional elastic visco-plastic consolidation model[J]. Journal of Hydraulic Engineering, 2005(5): 16-23. (in Chinese))
    [17]
    VERMEER P A, NEHER H P. A soft soil model that accounts for creep[C]// Proceedings of the International Symposium, “Beyond 2000 in Computational Geotechnics”. Amsterdam: Balkema, 249-261.
    [18]
    ADACHI T, OKA F. Constitutive equation for normally consolidated clays based on elasto-viscoplasticity[J]. Soils and Foundations, 1982, 22(4): 57-70.
    [19]
    王立忠, 但汉波. K0固结软黏土的弹黏塑性本构模型[J]. 岩土工程学报, 2007, 29(9): 1344-1354. (WANG Li-zhong, DAN Han-bo. Elastic viscoplastic constitutive model for K0-consolidated soft clays[J]. Chinese Journal of Geotechnical Engineering, 2007, 29(9): 1344-1354. (in Chinese))
    [20]
    LANCELLOTTA R, PREZIOSI L. A General nonlinear mathematical model for soil consolidation problems[J]. International Journal of Engineering Science, 1997, 35(10): 1045-1063.
    [21]
    胡亚元. 多重耗散函数率无关塑性力学在黏土模型中的应用[J]. 岩土力学, 2005 , 26(增刊1): 9-12. (HU Ya-yuan. Application of multiple dissipation potentials functions rate-independent plasticity model with applications to clay[J]. Rock and Soil Mechanics, 2005, 26(S1): 9-12.(in Chinese))
    [22]
    蔡国庆. 基于多孔介质理论的土体多场耦合模型及其在非饱和土本构建模中的应用[D]. 北京: 北京交通大学, 2012. (CAI Guo-qing. Multi-field coupled model for soils based on porous media theory and its application in modelling the constitutive behaviour of unsaturated soils[D]. Beijing: Beijing Jiaotong University, 2012. (in Chinese))
    [23]
    孔 亮, COLLINS I F. 模拟土体本构的热力学方法[J]. 岩土力学, 2008, 29(7): 1732-1740. (KONG Liang, COLLINS I F. Thermomechanical approach to modeling- constitutive behaviors of geomaterials[J]. Rock and Soil Mechanics, 2008, 29(7): 1732-1740. (in Chinese))
    [24]
    胡亚元. 准塑性的黏弹性模型在黏土中的应用[J]. 岩土工程学报, 2009, 31(3): 353-360. (HU Ya-yuan. Application of plastic-like visco-elastic model to clay[J]. Chinese Journal of Geotechnical Engineering, 2009, 31(3): 353-360. (in Chinese))
    [25]
    JIANG Y M, LIU M. Granular solid hydrodynamics[J]. Granular Matter, 2009, 11(3): 139-156.
    [26]
    张志超, 程晓辉. 饱和土非等温固结和不排水剪切的热力学本构模型[J]. 岩土工程学报, 2013, 35(7): 1297-1306. (ZHANG Zhi-chao, CHENG Xiao-hui. A thermodynamic constitutive model for non-isothermal consolidation and undrained shear behaviors of saturated soils[J]. Chinese Journal of Geotechnical Engineering, 2013, 35(7): 1297-1306. (in Chinese))
    [27]
    ZHANG Z C, CHENG X H. A fully coupled THM model based on a non-equilibrium thermodynamic approach and its application[J]. International Journal for Numerical and Analytical Methods in Geomechanics, in press.
    [28]
    DE GROOT S R, MAZUR P. Non-equilibrium thermodynamics[M]. New York: Dover Publications, 1984.
    [29]
    ONSAGER L. Reciprocal relations in irreversible processes[J]. Physical Review, 1931, 37(2): 405-426.
    [30]
    JIANG Y, LIU M. The physics of granular mechanics[M]// Mechanics of Natural Solids. Berlin: Springer Berlin Heidelberg, 2009: 27-46.
    [31]
    SHEAHAN T C. An Experimental study of the time-dependent undrained shear behavior of resedimented clay using automated stress path triaxial equipment[D]. Boston: Massachusetts Institute of Technology, 1991.
    [32]
    HORVÁTH V K, JÁNOSI I M, VELLA P J. Anomalous density dependence of static friction in sand[J]. Physical Review, 1996, 54(2): 2005-2009.
    [33]
    张志超. 饱和岩土体多场耦合热力学本构理论及模型研究[D]. 北京: 清华大学, 2013. (ZHANG Zhi-chao. Research on multi-field coupling thermodynamic constitutive theory and model for saturated geomaterials[D]. Beijing: Tsinghua University, 2013. (in Chinese))
  • Cited by

    Periodical cited type(3)

    1. 朱艳. 邹城地区黏土体-结构面接触渗透下渗流侵蚀试验研究. 广东水利水电. 2024(08): 20-24 .
    2. 胡嘉英,邹光华,徐祚卉,陈学习,杨涛,师皓宇,周爱桃. 含瓦斯煤岩构造界面剪切-渗流耦合试验方法及教学设计实践. 实验技术与管理. 2024(09): 61-72 .
    3. 刘健,杨浩,崔晓琳. 围压作用下土-结构接触渗流特性. 山东大学学报(工学版). 2023(03): 60-68 .

    Other cited types(5)

Catalog

    Article views PDF downloads Cited by(8)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return