DOI: 10.11779/CJGE202202014

钙质砂小应变初始剪切模量试验研究

史金权^{1,2,3},肖 杨^{*1,2,3},刘汉龙^{1,2,3},Wim Haegeman⁴

(1. 重庆大学土木工程学院,重庆 400045; 2. 重庆大学山地城镇建设与新技术教育部重点实验室,重庆 400045; 3. 库区环境地质灾害防治 国家地方联合工程研究中心(重庆),重庆 400045; 4. 根特大学土木工程系, Gent 9000,比利时)

摘 要:砂土的初始剪切模量 G_{max} 是反映土体刚度的一个重要的力学参数。利用多方向的弯曲元测试技术,对取自波 斯湾人工岛礁的钙质砂小应变初始剪切模量进行研究,分析了不均匀系数 Cu、平均粒径 D50 及应力历史对钙质砂水平 (G_{HH})和垂直平面(G_{HV}和 G_{VH})上剪切模量的影响。结果表明:各向同性固结下,钙质砂的 G_{max}各向异性显著,表 现为 G_{HH}值大于 G_{HV}和 G_{VH}; G_{max}随着平均粒径 D50 增大而增加,但随着不均匀系数 Cu 增大而降低;卸载阶段的 G_{max} 高于加载阶段的 G_{max}值;将不均匀系数 Cu、平均粒径 D50 和超固结比 OCR 作为变量对预测砂土 G_{max}的 Hardin 公式进 行修正,相较于传统 Hardin 公式,修正后的公式能够更好地预测本文中使用钙质砂的 G_{max}。 关键词:初始剪切模量;弯曲元;小应变;钙质砂;Hardin 公式

中图分类号: TU435 **文献标识码:** A **文章编号:** 1000 - 4548(2022)02 - 0324 - 10 **作者简介:** 史金权(1990—),男,博士,助理研究员,主要从事微生物加固及钙质砂本构关系方面的研究工作。E-mail: jinquan_shi@163.com。

Experimental study on small-strain shear modulus of calcareous sand

SHI Jin-quan^{1, 2, 3}, XIAO Yang^{1, 2, 3}, LIU Han-long^{1, 2, 3}, Wim Haegeman⁴

(1. School of Civil Engineering, Chongqing University, Chongqing 400045, China; 2. Key Laboratory of New Technology for Construction

of Cities in Mountain Area, Chongqing University, Chongqing 400045, China; 3. National Joint Engineering Research Center of

Geohazards Prevention in the Reservoir Areas (Chongqing), Chongqing 400045, China; 4. Department of Civil Engineering, Ghent

University, Gent 9000, Belgium)

Abstract: The small-strain shear modulus is an important parameter indicating soil stiffness in geotechnical engineering. In this study, the multidirectional bender element technique is used to investigate the small-strain shear modulus of calcareous sand from Persian Gulf. The effects of the coefficient of gradation, mean particle size and stress history on G_{HH} , G_{HV} and G_{VH} on both vertical and horizontal planes are considered. The test results show that for the calcareous sand used in this study, the stiffness anisotropy is significant, behaving as the higher G_{HH} than G_{HV} and G_{VH} . G_{max} increases with the increase of D_{50} and decreases with the increase of C_u . The values of G_{max} at the loading stage are apparently higher than those at the unloading stage. Finally, the Hardin equation for predicting the small-strain shear modulus is modified with the participation of D_{50} , C_u and OCR, and a better prediction capability is obtained by comparing the traditional Hardin equation.

Key words: initial shear modulus; bender element; small strain; calcareous sand; Hardin equation

0 引 言

近年来,随着人工岛礁的不断兴建,钙质砂的力 学性质受到学者们不断关注^[1]。已有文献表明,钙质 砂的物理及力学性质比其他岩土材料特殊^[2-3],如较高 的动强度和更为显著的颗粒破碎特性^[4-10]。为了提升 钙质砂地基的稳定性,在探索钙质砂力学特性的同时, 一些新的加固方法如微生物胶结也逐渐得到研究和应 用^[11-13]。土的众多力学参数中,初始剪切模量*G*_{max}常 作为重要的力学指标应用于土体稳定性评价与数值模 拟计算。随着现代土力学的发展,土体强度特性得到 大量研究,岩土工程中,大部分的大变形土体破坏(应 变超过 20%)能够有效避免;同时,在现代城市基础 建设中,既有建筑物荷载对基坑及隧道等地下工程周 围土体变形特性有显著影响,因而在对土体强度特性 研究的同时,土体抵抗变形的能力也得到越来越多的

基金项目:国家自然科学基金优秀青年基金项目(51922024);重庆市 自然科学基金杰出青年基金项目(cstc2019jcyjjqX0014);中央高校基 本科研业务费项目(2020CDJQY-A068) 收稿日期:2021-05-06 *通信作者(E-mail: hhuxyanson@163.com)

重视^[14]。试验表明,当土体应变从10⁻⁷弹性应变发展 到10⁻⁴时,剪切模量呈现出指数形式的衰减^[15],表示 土体抵抗剪切变形的能力降低,进而导致土体失效破 坏。因此,作为反映土体刚度的重要参数,小应变剪 切模量*G*_{max}的影响因素^[16-26]、测量方法^[27]以及其与其 他土力学参数之间的关联性^[28]是近几十年来一个重 要的研究方向。

相较于黏性土,砂土*G*_{max}的影响因素更容易被量 化,这是由砂土本身的特点决定的。目前,学者们提 出影响砂土*G*_{max}的因素主要有砂土的颗粒性质,如颗 粒形状^[16]和表面粗糙度^[17]等;砂土物理化学性质,如 矿物成分^[18]、土体不均匀系数^[19]、土体组构^[20]和微粒 含量^[21-23]等;砂土所处的外部环境,如饱和度^[24]等; 以及砂土的应力状态,如各向异性应力^[25]及超固结状 态^[26]等。以上影响因素目前都可以被量化,如表征颗 粒形状的圆度,表征颗粒大小的平均粒径 *D*₅₀,反映 土体级配的不均匀系数 *C*_u及微粒百分含量 *F*_C等。这 些量化的参数可被引入到 Hardin^[29]提出的用于预测 砂土小应变初始剪切模量的经验公式:

$$G_{\max} = Af(e) \left(\frac{p'}{p_a}\right)^n \quad . \tag{1}$$

式中 A 和 n为经验常数; p'为有效主应力; p_a 为大 气压强, 取 100 kPa; f(e)为孔隙比函数,

$$f(e) = \frac{(a-e)^2}{1+e}$$
 , (2)

式中, *a*为经验常数。Jamiolkowski 等^[30]对 Hardin 公 式进行了修正,提出了一个新的孔隙比函数,表示为 $f(e) = e^{-d}$, (3)

式中, d 为经验常数。学者们通常将 A, n, a 和 d 表示成以 C_u 等砂土参数为变量的经验函数,比较经典的如:Whitchman 等^[19]提出 A, n 和 a 可以表示为以 C_u 为变量的幂函数和指数函数,发现传统 Hardin 公式不适用于级配良好砂土,而修正后的公式预测效果更佳; Payan 等^[25]用 C_u 和颗粒形状规则度表示常数项 A 和n,得到的修正经验公式能够更好地预测具有不同颗粒形状及级配砂土 G_{max} ;Whitchman 等^[31]和 Goudarzy 等^[32]将粉粒含量 F_c 作为变量引入常数项 A, n 和a; Fioravante 等^[26]提出将超固结比 OCR 引入 Hardin 公式预测钙质砂的 G_{max} ,表示为

$$G_{\max} = Af(e) \left(\frac{p'}{p_a}\right)^n \text{ OCR}^m \quad . \tag{4}$$

超固结比 OCR 为加载阶段有效应力的最大值与 卸载时有效应力之比, *m* 为经验常数,基于此, Shi 等^[23]考虑粉粒含量和应力历史的耦合作用,将*F*_c作为 变量对*m*进行修正,成功预测了卸载过程中含非塑性 粉粒钙质砂的G_{max}。目前,有关级配和颗粒大小的砂 土小应变剪切模量研究多以石英砂为研究对象,而文 献表明,钙质砂的G_{max}与石英砂存在较大差异,表现 为在相同孔隙比下较大的A和n以及对应力历史的敏 感性^[23,26]不同。并且,综合考虑砂土不均匀系数,颗 粒大小和应力历史三者耦合作用下的钙质砂G_{max} 演 化规律的研究尚未见报道,亟需开展相关研究。

常规室内试验中直接测量土体小应变剪切模量的 试验方法有两种,分别为共振柱试验和剪切波速试验。 其中,剪切波速试验大多依靠弯曲元传感器来实现, 其工作原理是依靠一对弯曲元在弹性应变范围内向土 体内部发送和接收剪切波,*G*_{max}可由测得的剪切波速 计算得到:

$$G_{\rm max} = \rho v_{\rm s}^2 \quad , \tag{5}$$

式中, ρ 为土体密度 (kg/m³), v_s 为测得的剪切波速 (m/s)。剪切波速法测量土体 G_{max} 的可靠性已得到广 泛证实,由于剪切波在土体内部以微小应变进行传播, 因此其对砂土颗粒特性和土体结构十分敏感,可以用 来表征土体微观结构变化^[20]。本文开展三轴各向同性 固结结合弯曲元试验研究,通过测量水平和垂直两个 方向上的剪切波速,得到了水平和垂直平面上的剪切 模量;并探讨了砂土不均匀系数 C_u 、平均粒径 D_{50} 和 超固结比 OCR 对钙质砂小应变初始剪切模量 G_{max} 的 影响;将这 3 个影响因素进行量化,引入 Hardin 公式, 修正了用于预测钙质砂 G_{max} 的经验公式,同时验证了 该公式的有效性。

1 试 验

1.1 试验材料

试验所用钙质砂取自波斯湾人工岛礁,主要由海 洋生物残骸组成,如贝壳和珊瑚碎屑。经测定,其碳 酸钙含量高于 95%。本文首先将原状钙质砂用德国 DIN ISO 11277:2002标准筛进行颗粒筛分^[33],后经 过调配,得到了具有相同平均粒径但不均匀系数不同 的砂样(SCU17,SCU18和SCU19),对于不同平均 粒径砂样,本文选取经筛分得到的0.315~0.5,0.63~ 1,1.25~2 mm 三组粒径钙质砂,3组砂样的不均匀 系数接近 1,排除了不均匀系数的影响,且平均粒径 差别明显,能够有效地反映平均粒径的影响。本文所 用砂样的级配曲线和物理特性如图1(a)和表1所示, 钙质砂的颗粒形貌如图1(b)所示。

1.2 试验设备

试验使用设备为 GDS 应力路径三轴仪,配合自行装配的弯曲元传感器,以实现水平和垂直两个方向上

砂样	$e_{\rm max}$	e_{\min}	D_{50}	C_{u}	$G_{\rm s}$
0.315 ~ 0.5 mm	1.40	0.91	0.4075	1.30	2.81
0.63 ~ 1 mm	1.69	1.13	0.8150	1.30	2.81
1.25 ~ 2 mm	1.85	1.34	1.6250	1.30	2.81
SCU17	1.54	1.05	0.8100	1.60	2.80
SCU18	1.36	0.53	0.8100	3.21	2.81
SCU19	1.34	0.91	0.8100	5.13	2.81

的剪切波速测量。其中水平方向的剪切波可分为垂直 激振和水平激振两种,波速可分别表示为 V_{HV}和 V_{HH}, 第一个下标代表剪切波的传播方向,第二个下标代表 剪切波的激振方向,对于垂直方向上传播的剪切波, 可表示为 VvH,与此3种剪切波对应的Gmax 可表示为 GHH, GHV和 GVH, 弯曲元传感器的具体布置形式及剪 切波的工作方式如图 2(a) 所示。在试验中,水平向 弯曲元传感器的布置形式采用的是摩阻式(frictional bender element)^[34],弯曲元传感器不必插入土体,剪 切波的产生和接收依靠弯曲元带动两个刚性薄片完 成。首先在制样前, 需沿试样高度的 1/3 和 2/3 处在 橡皮膜上切割出两对开口,开孔大小需根据弯曲元传 感器大小确定,本文开口尺寸为3mm×5mm,两对 刚性薄片通过使用柔性胶贴合在橡皮膜内测以封堵开 口并与土体接触,待试样制好后,使用快干胶将弯曲 元传感器固定在刚性薄片上,图2(a)左侧为弯曲元 传感器在试样一侧的安装示意图。依据这种特殊的布 置形式,水平方向剪切波的传播距离可定义为两个刚 性薄片之间的距离^[20,34]。此种布置形式的有效性已在 文献[20,34]中得到证实。图 2(b)为典型剪切波曲 线,试验中剪切波的激振频率为15kHz,振幅为20V,

波形为单次触发正弦波,采用波峰到波峰的形式确定 剪切波传播的时间,同时考虑了弯曲元系统的延时性 和加载过程中体变对剪切波传播距离的影响,之后, 根据刚性薄片之间的距离,可推算出剪切波速大小。

Fig. 2 Diagram and working principle of multidirectional bender element

1.3 试验工况与方法

每种砂样考虑 3 种相对密实度,每个工况进行 3 组试验,一共 18 个工况 54 组试验。具体试验方案如表 2 所示。本文中所有试样的制备均采用干击法^[35-36]:制 样过程中,砂样倒入一长颈漏斗,将漏斗缓慢提升并 保持漏斗下部端口与试样距离接近为零,同时水平方 向上做圆周轨迹转动以确保砂样均匀分布,所有试样 按质量等分为 5 层制样,试样的密实采取从上部击实 的方法同时使用欠压实技术^[37],尽量使每层砂样密度 保持一致,松砂可不分层。所有试样采用二氧化碳和 反压相结合的方法进行饱和,通二氧化碳的时间为 0.5 h,反压为 300 kPa。待试样饱和后(*B*>0.95)进行各 向同性固结试验。固结试验中,每个试样加载到有效 应力 400 kPa 后再卸载到 50 kPa,加载路径如图 2 (c) 所示。每个加载阶段需保持 0.5 h 以确保体变达到相对 稳定状态,此时进行弯曲元试验。加载后的试样经干燥 处理进行筛分试验以检查颗粒破碎情况。

表 2 试验方案							
Table 2 Test programs							
_	砂样	初始相对密实度 Dr/%					
	0.315~0.5 mm	5	50	71			
	$0.63{\sim}1~\text{mm}$	20	54	85			
	1.25~2 mm	8	58	90			
	SCU17	13	52	78			
	SCU18	10	56	90			
	SCU19	8	55	99			

2 试验结果分析

2.1 平均粒径 D₅₀ 对 G_{max} 的影响

图 3 为不同平均粒径的钙质砂在不同相对密实度下, *G*_{max} 随平均有效主应力在加载阶段的变化情况。

由图 3 可知,随着压力的增大, G_{max} 呈逐渐增大的趋势但增大的幅度逐渐放缓。随着相对密实度的提高,砂样的 G_{max} 也逐渐增大。由式(1)可知, G_{max} 计算式中包括孔隙比函数,若将 G_{max} 用孔隙比函数进行归一化处理,理论上可抵消掉密实度对 G_{max} 的影响。 Jamiolkowski等^[30]认为式(3)更适用于颗粒形状不规则的砂土。本文中使用的钙质砂通过图像分析可归类为低球度和低圆度的不规则砂^[20],因此选取式(3)为 G_{max} 归一化的孔隙比函数。式(3)中的经验常数d取 1.2,与 Shi等^[23]对同一种钙质砂d的取值保持一致。有研究表明,d值大小只与砂土的组成成分有关,并且由于试验数量的限制,d与 D_{50} 和 C_u 之间的经验关系本文不进行讨论。图 3 (d) ~ (f)表示的是 3 组试样的初始剪切模量以孔隙比函数归一后($G_{max} / f(e)$)

Fig. 3 G_{max} versus effective mean stress of sands with various particle sizes

随应力变化的趋势,可以看出,归一化后,不同相对 密实度下的 G_{max} / f(e) 差别不明显,但 G_{HH} 始终高于 G_{HV} 和 G_{VH} 值, Shi 等^[20]观察到传播和激振方向都平 行于层理面的剪切波波速要大于其他平面上的剪切波 速,而层理面是土体结构各向异性的直接表现之一。 本文中归一后由孔隙比或相对密实度引起的 G_{max} 差 异性被抵消,由于土体结构产生的 G_{max} 各向异性依旧 存在,反映出初始剪切模量各向异性不受土体相对密 实度的影响,与 Shi 等^[20]研究结果一致。

由于归一后不同相对密实度下 $G_{max} / f(e)$ 值接 近,因此,为了比较 D_{50} 对初始剪切模量的影响,对 于不同粒径组的砂样,取各相对密实度下 $G_{max} / f(e)$ 的均值进行比较,见图 4。由图 4 可以看出,对于 G_{HH} , G_{HV} 和 G_{VH} ,随着平均粒径 D_{50} 的增加,初始剪切模 量不断增大。Wichtmann 等^[31]比较了具有相同 C_u 和不 同 D_{50} 石英砂的初始剪切模量,发现 D_{50} 对 G_{max} 的影 响可以忽略不计,与本文中分析的结论不一致。考虑 到本文所用的钙质砂颗粒形状,这里推测,本文中 D_{50} 对初始剪切模量的影响是由于不同平均粒径下颗粒形 状差异性导致的。Shi 等^[20]通过对同一种钙质砂进行 三维 CT 扫描发现,随着粒径的增大,砂颗粒的球度 逐渐下降,颗粒形状变得更为不规则。一般认为,颗 粒形状越不规则,孔隙比相同情况下砂土的初始剪切 模量越大^[16]。因此,本文中钙质砂的初始剪切模量会 随着粒径的增大而增大,而文献[16]中石英砂的初始 剪切模量对 D₅₀不敏感,推测是由于不同粒径的石英 砂颗粒形状差异不明显导致的。

2.2 不均匀系数 Cu对初始剪切模量的影响

与研究平均粒径对初始剪切模量影响的方法类 似,图5为不同相对密实度下,不同 C_u 的钙质砂 G_{max} 随有效主应力的变化趋势。对于各个不均匀系数的砂 土,随着相对密实度的增加, G_{max} 不断增大。同样地, 对于归一化后 $G_{max}/f(e)$,相对密实度对初始剪切模 量的影响被抵消,如图5(d)~(f)所示。不同 C_u 的钙质砂 $G_{max}/f(e)$ 如图6所示。由图6可以看出, 随着 C_u 的增大,钙质砂的初始剪切模量是不断降低的,这与文献[19]中 C_u 对石英砂初始剪切模量的影响 一致,同时也表明不均匀系数对本文中所用钙质砂整 体的颗粒形状影响不显著。

图 5 不同不均匀系数试样 G_{max} 随应力变化趋势

Fig. 6 Effects of particle-size gradation on normalized $G_{\rm max}$

2.3 应力历史对初始剪切模量的影响

本文通过分析卸载阶段与加载阶段初始剪切模量 之比与超固结比 OCR 之间的关系来探究应力历史对 钙质砂初始剪切模量的影响。OCR 表示的是试样经历 过的最大有效应力值与卸载阶段的应力大小的比值。 图 7(a)为典型的卸载阶段钙质砂初始剪切模量变化 规律。由图 7(a)可知,卸载阶段的G_{max} / f(e)要高 于加载阶段,表明加载阶段对土体结构影响十分显著, 卸载后土体仍继承最大荷载时的土体特性,土体结构 恢复性较差。文献[26]表明,对于钙质砂,由于颗粒 形状不规则,其颗粒互锁效应较石英砂更为显著,使 其土体结构在卸载阶段趋向保持最大荷载时的状态, 因而表现出高于加载阶段的土体刚度和强度。图 7(b) 为典型的卸载和加载阶段 G_{max} / f(e)比值(刚度比) 随 OCR 变化的趋势,可以看出,随着 OCR 的增大, 刚度比逐渐增大但增加的速率趋向放缓。另外, G_{HH}, G_{HV}和 G_{VH}呈现出较为一致的变化规律。

2.4 修正 Hardin 公式

对于钙质砂,本文选取式(4)的形式对 Hardin 公式进行修正。对于式(4)中常数项, Payan 等^[16] 提出 *A* 可表示为以不均匀系数 *C*_u和颗粒形状参数λ 为变量的幂函数形式:

$$I = k C_{\rm u}^c \lambda^t \quad , \tag{6}$$

式中, k, c, t 为经验常数。本文对颗粒形状未作分析, 因此以 D₅₀代替 λ 对数据点进行拟合, 表示为

$$A = k C_{\rm u}^c D_{50}^t \quad . \tag{7}$$

首先,由图 4,6 等加载阶段的数据可拟合得到式 (4)中的常数项 *A* 和 *n*,分别绘制 *A* 和 *n* 与 *D*₅₀ 和 *C*_u的关系图,如图 8,9 所示。

由图 8 可以看出, *n* 数据点较为分散,规律性不明显。因此,对于式(4)中的 *n* 取所有数据的均值,为 0.544。图 9 表明, *A* 与 *D*₅₀和 *C*_u存在较为明显的

变化规律,首先对 *A* 与 *C*_u进行拟合,得到 *c*,3 个方向的 *c* 接近,取均值,为-0.303。再将 *A* 用 *C*^c_u进行归一化处理,绘制 *A*/*C*^c_u与 *D*₅₀的相关关系如图 9 (b)所示,拟合得到 *t*= 0.13, *k*=112.13 (VH, HV)和 138.38 (HH)。

- 图 7 (a) 卸载阶段 $G_{\max} / f(e) : 0.63 \sim 1 \text{ mm}, D_r=20\%$; (b) 卸载阶段与加载阶段 $G_{\max} / f(e)$ 比值随超固结比变化趋势: 0.63~1 mm, $D_r=20\%$
- Fig. 7 (a) G_{max} / f(e) at the unloading stage: 0.63-1 mm, D_r=20%;
 (b) The ratios of G_{max} / f(e) at the unloading and loading stages versus OCR: 0.63~1 mm, D_r=20%

图 8 常数 *n* 随 *D*₅₀ 和 *C*_u 的变化规律 Fig. 8 *n* versus *D*₅₀ and *C*_u

图 9 A 与 D50 和 Cu 的关系

Fig. 9 A versus D_{50} and C_u

由图 7(b)可知,加卸载阶段的刚度比与 OCR 可由幂函数进行表示:

$$\frac{G_{\text{int}}/f(e)}{G_{\text{int}}/f(e)} = h\text{OCR}^{m} \quad . \tag{8}$$

由所有工况的拟合结果可知,h近似为1,因此在 式(4)中可省略不计。GHH,GHV和GVH的幂指数m 十分接近,因此对于不同方向m取所有拟合结果的平 均值,并分别将不同工况下的m值与相对密实度Dr 绘制于图10(a)和(b)。由图10可以看出,m受相 对密实度影响较大,随着相对密实度的增加,m值不 断减小。由图10(a)可知,D50对m的变化趋势影响 较大,随着D50的增加,趋势线向上方平移,表明m 值是随着D50的增大而不断增加。另外,图10(a)中 3个D50的趋势线接近平行,表明其斜率近似相等, 可取三者平均值。3个D50拟合公式的主要差别在于 截距,因此,图10(c)中给出了截距与D50的关系, 可以看出,截距随着D50的增大而线性增加,进而参 数m可表示为相对密实度Dr和D50的经验关系:

 $m = -0.0589D_r + 0.04D_{50} + 0.169$ 。 (9) 另外,由图 10 (b)可知, C_u 对 m 值的影响规律不明显。

综上,本文中修正的钙质砂初始剪切模量预测公 式可整理为

$$G_{\rm max} = Ae^{-1.2} \left(\frac{p'}{p_{\rm a}}\right)^{0.544} \text{OCR}^{-0.089D_{\rm r}+0.04D_{50}+0.169}$$
, (10)

其中,对于 GHH:

$$A = 138.38 C_u^{-0.303} D_{50}^{0.13}$$
 , (11)
对于 $G_{\rm HV}$ 和 $G_{\rm VH}$:

$$A = 112.13C_{\nu}^{-0.303}D_{50}^{0.13} \quad . \tag{12}$$

目前,考虑应力历史影响的 Hardin 公式修正研究 较少,本文与 Fioravante 等^[26]针对肯尼亚钙质砂提出 的经验公式进行对比,结果如图 11 所示。可以看出, 对于 *G*_{HH},*G*_{HV}和 *G*_{VH}, Fioravante 等^[26]的经验公式预 测值过高,且离散性较大,本文的修正公式对 *G*_{max} 预测更为准确。不同公式预测能力差别主要归因于砂 土物理性质的不同,虽然肯尼亚钙质砂的碳酸钙成分 与本文钙质砂相近,但其颗粒形状更加规则,球度和 圆度更高,导致其对应力的敏感度以及颗粒互锁效应 与本文钙质砂有着较大区别,这也侧面反映出,在实 际工程中,本文提出的 Hardin 修正公式只适用于与当 前钙质砂物理性质相似的砂土,对于物理性质差别较 大的砂土,需另作研究。

图 10 *m* 与 *D*_r的关系 Fig. 10 *m* versus *D*_r and *D*₅₀

图 11 修正 Hardin 模型预测效果比较

Fig. 11 Comparison of prediction capability of modified Hardin models

3 结 论

本文采用多方向弯曲元测试技术,对中东人工岛 礁钙质砂的初始剪切模量 G_{max}进行了测定,讨论了砂 样的不均匀系数,平均粒径和应力历史对 G_{max}大小的 影响,最后将得到的数据用于修正预测砂土初始剪切 模量的 Hardin 公式。

(1)钙质砂小应变初始剪切模量各向异性十分显著,表现为 G_{HH} 值大于 G_{HV}和 G_{VH}。

(2)随着相对密实度的增大,钙质砂 G_{max} 随之 增大,但将 G_{max} 以孔隙比归一化后,由土体相对密实 度产生的 G_{max} 差异性被抵消。

(3)随着 D₅₀的增大,归一化的 G_{max} 增大,推 测这一变化趋势的产生是由颗粒形状差异性导致的; 随着颗粒不均匀系数 C_u的增大,钙质砂的初始剪切模 量降低。 (4) 修正的 Hardin 公式中引入不均匀系数 C_u, 平均粒径 D₅₀ 和超固结比 OCR, 修正后的公式能够更 好地预测本文中使用的钙质砂的初始剪切模量。

参考文献:

- 刘崇权, 汪 稔. 钙质砂物理力学性质初探[J]. 岩土力学, 1998, 19(1): 32 - 37, 44. (LIU Chong-quan, WANG Ren. Preliminary research on physical and mechanical properties of calcareous sand[J]. Rock and Soil Mechanics, 1998, 19(1): 32 - 37, 44. (in Chinese))
- [2] 张季如,华 晨,罗明星,等. 三轴排水剪切下钙质砂的颗粒破碎特性[J]. 岩土工程学报, 2020, 42(9): 1593 1602.
 (ZHANG Ji-ru, HUA Chen, LUO Ming-xing, et al. Behavior of particle breakage in calcareous sand during drained triaxial shearing[J]. Chinese Journal of Geotechnical Engineering, 2020, 42(9): 1593 1602. (in Chinese))
- [3] 马维嘉,陈国兴,李 磊,等.循环荷载下饱和南沙珊瑚砂 的液化特性试验研究[J]. 岩土工程学报, 2019, 41(5): 981 - 988. (MA Wei-jia, CHEN Guo-xing, LI Lei, et al. Experimental study on liquefaction characteristics of saturated coral sand in Nansha Islands under cyclic loading[J]. Chinese Journal of Geotechnical Engineering, 2019, 41(5): 981 - 988. (in Chinese))
- [4] XIAO Y, WANG C G, ZHANG Z C, et al. Constitutive modeling for two sands under high pressure[J]. International Journal of Geomechanics, 2021, 21(5): 04021042.
- [5] XIAO Y, YUAN Z X, CHU J, et al. Particle breakage and energy dissipation of carbonate sands under quasi-static and dynamic compression[J]. Acta Geotechnica, 2019, 14(6): 1741 - 1755.
- [6] XIAO Y, LIU H L, CHEN Q S, et al. Particle breakage and deformation of carbonate sands with wide range of densities during compression loading process[J]. Acta Geotechnica, 2017, 12(5): 1177 - 1184.
- [7] XIAO Y, WANG L, JIANG X, et al. Acoustic emission and force drop in grain crushing of carbonate sands[J]. Journal of Geotechnical and Geoenvironmental Engineering, 2019, 145(9): 04019057.
- [8] 蔡正银,侯贺营,张晋勋,等.考虑颗粒破碎影响的珊瑚砂临界状态与本构模型研究[J].岩土工程学报,2019,41(6): 989 - 995. (CAI Zheng-yin, HOU He-ying, ZHANG Jin-xun, et al. Critical state and constitutive model for coral sand considering particle breakage[J]. Chinese Journal of Geotechnical Engineering, 2019, 41(6): 989 - 995. (in Chinese))

- [9] XIAO Y, YUAN Z X, DESAI C S, et al. Effects of load duration and stress level on deformation and particle breakage of carbonate sands[J]. International Journal of Geomechanics, 2020, 20(7): 06020014.
- [10] 王 磊, 蒋 翔, 肖 杨, 等. 钙质砂颗粒的尺寸效应及 雪崩动力学特性试验研究[J]. 岩土工程学报, 2021, 43(6): 1029 - 1038. (WANG Lei, JIANG Xiang, XIAO Yang, et al. Experimental research on size effect and avalanche dynamics characteristics of calcareous sand particles[J]. Chinese Journal of Geotechnical Engineering, 2021, 43(6): 1029 - 1038. (in Chinese))
- [11] 刘汉龙,肖 鹏,肖 杨,等. MICP 胶结钙质砂动力特性 试验研究[J]. 岩土工程学报, 2018, 40(1): 38-45. (LIU Han-long, XIAO Peng, XIAO Yang, et al. Dynamic behaviors of MICP-treated calcareous sand in cyclic tests[J]. Chinese Journal of Geotechnical Engineering, 2018, 40(1): 38-45. (in Chinese))
- [12] 肖 鹏, 刘汉龙,张 字,等. 微生物温控加固钙质砂动强度特性研究[J]. 岩土工程学报, 2021, 43(3): 511 519. (XIAO Peng, LIU Han-long, ZHANG Yu, et al. Dynamic strength of temperature-controlled MICP-treated calcareous sand[J]. Chinese Journal of Geotechnical Engineering, 2021, 43(3): 511 519. (in Chinese))
- [13] XIAO P, LIU H L, STUEDLEIN A W, et al. Effect of relative density and biocementation on cyclic response of calcareous sand[J]. Canadian Geotechnical Journal, 2019, 56(12): 1849 - 1862.
- [14] BURLAND J B. Ninth Laurits Bjerrum Memorial Lecture:
 "Small is beautiful"—the stiffness of soils at small strains[J]. Canadian Geotechnical Journal, 1989, 26(4): 499 - 516.
- [15] YAMASHITA S, JAMIOLKOWSKI M, PRESTI D C F L. Stiffness nonlinearity of three sands[J]. Journal of Geotechnical and Geoenvironmental Engineering, 2000, 126(10): 929 – 938.
- [16] PAYAN M, KHOSHGHALB A, SENETAKIS K, et al. Effect of particle shape and validity of Gmaxmodels for sand: a critical review and a new expression[J]. Computers and Geotechnics, 2016, 72: 28 - 41.
- [17] OTSUBO M, O'SULLIVAN C, SIM W W, et al. Quantitative assessment of the influence of surface roughness on soil stiffness[J]. Géotechnique, 2015, 65(8): 694 – 700.
- [18] 梁 珂,陈国兴,杭天柱,等.砂类土最大动剪切模量的 新预测模型[J]. 岩土力学, 2020, 41(6): 1963 - 1970, 1982.
 (LIANG Ke, CHEN Guo-xing, HANG Tian-zhu, et al. A new

prediction model of small-strain shear modulus of sandy soils[J]. Rock and Soil Mechanics, 2020, **41**(6): 1963 - 1970, 1982. (in Chinese))

- [19] WICHTMANN T, TRIANTAFYLLIDIS T. Influence of the grain-size distribution curve of quartz sand on the small strain shear modulus $G_{max}[J]$. Journal of geotechnical and geoenvironmental engineering, 2009, **135**(10): 1404 1418.
- [20] SHI J Q, HAEGEMAN W, CNUDDE V. Anisotropic small-strain stiffness of calcareous sand affected by sample preparation, particle characteristic and gradation[J]. Géotechnique, 2021, 71(4): 305 - 319.
- [21] 吴 琪,刘 抗,郭启洲,等. 基于二元介质模型的砂类 土小应变剪切模量评价方法[J]. 岩土力学, 2020, 41(11): 3641 - 3650. (WU Qi, LIU Kang, GUO Qi-zhou, et al. A new method for evaluating small-strain shear modulus of sandy soils based on binary medium model[J]. Rock and Soil Mechanics, 2020, 41(11): 3641 - 3650. (in Chinese))
- [22] 张 涛,刘松玉,蔡国军. 固化粉土小应变剪切模量与强度增长相关性研究[J]. 岩土工程学报, 2015, 37(11): 1955 1964. (ZHANG Tao, LIU Song-yu, CAI Guo-jun. Relationship between small-strain shear modulus and growth of strength for stabilized silt[J]. Chinese Journal of Geotechnical Engineering, 2015, 37(11): 1955 1964. (in Chinese))
- [23] SHI J Q, HAEGEMAN W, XU T. Effect of non-plastic fines on the anisotropic small strain stiffness of a calcareous sand[J]. Soil Dynamics and Earthquake Engineering, 2020, 139: 106381.
- [24] DONG Y, LU N. Dependencies of shear wave velocity and shear modulus of soil on saturation[J]. Journal of Engineering Mechanics, 2016, 142(11): 04016083.
- [25] PAYAN M, KHOSHGHALB A, SENETAKIS K, et al. Small-strain stiffness of sand subjected to stress anisotropy[J].
 Soil Dynamics and Earthquake Engineering, 2016, 88: 143 - 151.
- [26] FIORAVANTE V, GIRETTI D, JAMIOLKOWSKI M. Small strain stiffness of carbonate Kenya Sand[J]. Engineering Geology, 2013, 161: 65 - 80.
- [27] YOUN J U, CHOO Y W, KIM D S. Measurement of small-strain shear modulus Gmax of dry and saturated sands by bender element, resonant column, and torsional shear tests[J]. Canadian Geotechnical Journal, 2008, 45(10): 1426 - 1438.

- [28] 周燕国, 沈 涛, 王 越, 等. 基督城易液化场地震后小应变剪切刚度演化规律研究[J]. 岩土工程学报, 2020,
 42(8): 1411 1417. (ZHOU Yan-guo, SHEN Tao, WANG Yue, et al. Post-earthquake evolution of small-strain shear stiffness at liquefiable deposit in Christchurch[J]. Chinese Journal of Geotechnical Engineering, 2020, 42(8): 1411 1417. (in Chinese))
- [29] HARDIN B O, BLACK W L. Sand stiffness under various triaxial stresses[J]. Journal of the Soil Mechanics and Foundations Division, 1966, 92(2): 27 - 42.
- [30] JAMIOLKOWSKI M, LANCELLOTTA R, LO PRESTI D C F. Remarks on the stiffness at small strains of six Italian clays. Pre-failure deformation of geomaterials[J], 1995, 2: 817 - 836.
- [31] WICHTMANN T, NAVARRETE HERNÁNDEZ M A, TRIANTAFYLLIDIS T. On the influence of a non-cohesive fines content on small strain stiffness, modulus degradation and damping of quartz sand[J]. Soil Dynamics and Earthquake Engineering, 2015, 69: 103 – 114.
- [32] GOUDARZY M, RAHMAN M M, KÖNIG D, et al. Influence of non-plastic fines content on maximum shear modulus of granular materials[J]. Soils and Foundations, 2016, 56(6): 973 - 983.
- [33] German Institute for Standardization. Soil Quality Determination of Particle Size Distribution in Mineral Soil Material Method by Sieving and Sedimentation[R]. Berlin: German Institute for Standardization, 2002.
- [34] CHANEY R C, DEMARS K R, FIORAVANTE V, et al. On the use of multi-directional piezoelectric transducers in triaxial testing[J]. Geotechnical Testing Journal, 2001, 24(3): 243.
- [35] SHI J Q, HAEGEMAN W, ANDRIES J. Investigation on the mechanical properties of a calcareous sand: the role of the initial fabric[J]. Marine Georesources & Geotechnology, 2021, 39(7): 859 - 875.
- [36] SHI J Q, HAEGEMAN W, MASCINI A, et al. X-ray analysis on the effect of sample preparation on the microstructure of calcareous sands[J]. Marine Georesources & Geotechnology, 2021, 39(3): 302 - 311.
- [37] SELIG E T, LADD R S. Preparing test specimens using undercompaction[J]. Geotechnical Testing Journal, 1978, 1(1): 16.