• 全国中文核心期刊
  • 中国科技核心期刊
  • 美国工程索引(EI)收录期刊
  • Scopus数据库收录期刊
TANG Li-min. Polynomial Landweber iterative method for solving Poisson model parameters in soft subgrade settlement[J]. Chinese Journal of Geotechnical Engineering, 2013, 35(zk2): 853-856.
Citation: TANG Li-min. Polynomial Landweber iterative method for solving Poisson model parameters in soft subgrade settlement[J]. Chinese Journal of Geotechnical Engineering, 2013, 35(zk2): 853-856.

Polynomial Landweber iterative method for solving Poisson model parameters in soft subgrade settlement

More Information
  • Received Date: July 16, 2013
  • Published Date: November 24, 2013
  • Solving Poisson model parameters in settlement analysis will fail when the iterative matrix is ill-conditioned. Based on the matrix transformation theory, the classical Landweber iteration formula is derived, and a polynomial Landweber iterative method of Poisson model for soft soil subgrade settlement is proposed. The formula is also given. According to the nonlinear least-squares principle, the methods and formulas for parameter factors in the formula are given. The observed data of soft soil roadbed in expressways are analyzed using this method. The results show that the polynomial Landweber iterative method can effectively avoid the convergence situation which the ill-posed iterative matrix. Ideal embankment settlement results are achieved when the parameter factors are accuately selected.
  • [1]
    朱志铎, 周礼红. 软土路基全过程沉降预测的Logistic模型应用研究[J]. 岩土工程学报, 2009, 31(6): 965-969. (ZHU Zhi-duo, ZHOU Li-hong. Application of Logistic model in settlement prediction during complete process of embankment construction[J]. Chinese Journal of Geotechnical Engineering, 2009, 31(6): 965-969. (in Chinese))
    [2]
    赵明华, 龙 照, 邹新军. 路基沉降预测的Usher模型应用研究. [J].岩土力学, 2008, 29(11): 2973-2981. (ZHAO Ming-hua, LONG Zhao,ZOU Xin-jun.Prediction of roadbed settlement by Usher model[J]. Rock and Soil Mechanics, 2008, 29(11): 2973-2981. (in Chinese))
    [3]
    TANG Li-min. A regularization homotopy iterative method for ill-posed nonlinear least squares problem and its application[J]. Applied Mechanics and Materials, 2011(90-93): 3268-3273.
    [4]
    邓英尔, 谢和平. 全过程沉降预测的新模型与方法[J]. 岩土力学, 2005, 26(1): 1-4. (DENG Yin-er, XIE He-ping. New model and method of forecasting settlement during complete process of construction and operation[J]. Rock and Soil Mechanics, 2005, 26(1): 1-4. (in Chinese))
    [5]
    唐利民. 地基沉降预测模型的正则化算法[J]. 岩土力学, 2010, 31(12): 3945-3948+3957. (TANG Li-min. Regularization algorithm of foundation settlement prediction model[J]. Rock and Soil Mechanics, 2010, 31(12): 3945-3948+3957. (in Chinese))
    [6]
    宰金珉, 梅国雄. 全过程的沉降量预测方法研究[J]. 岩土力学, 2000, 21(4): 322-325.( ZAI Jin-min, MEI Guo-xiong. Forecast method of settlement during the complete process of construction and operation[J]. Rock and Soil Mechanics, 2000, 21(4): 322-325. (in Chinese))
    [7]
    А.Н.吉洪诺夫, В.Я.阿尔先宁. 不适定问题的解法[M]. 王秉忱译. 北京: 地质出版社, 1979: 142-174. (TIKHONOV A N, ARSENIN В Я. Solutions of ill-posed problems[M]. WANG Bing-chen, translate. Beijing: Geological Press, 1979: 142-174. (in Chinese))
    [8]
    王新洲. 非线性模型参数估计理论与应用[M]. 武汉: 武汉大学出版社, 2002: 1-132. (WANG Xin-zhou. Nonlinear model parameter estimation theory and application[M]. Wuhan: Wuhan University Press, 2002: 1-132. (in Chinese))
    [9]
    LANDWEBER L. An iteration formula for fredholm integral equations of the first kind amer[J]. J Math, 1951, 73: 615-624.
    [10]
    HANKE M, NEUBAUER A, SCHERZER O. A Convergence Analysis of the Landweber Iteration for Nonlinear Ill-posed Problems[J]. Numer Math, 1995, 72: 21-37.
    [11]
    KU¨GLER P. A derivative-free landweber iteration for parameter identifiation in certain elliptic pdes[J]. Inverse Problems, 2003, 19: 1407-1426.
    [12]
    XU J, HAN B, LI L. Frozen landweber iteration for nonlinear Ill-posed problems[J]. Acta Mathematicae Applicatae Sinica, 2007, 23(2): 329-336.

Catalog

    Article views (304) PDF downloads (256) Cited by()
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return