• 全国中文核心期刊
  • 中国科技核心期刊
  • 美国工程索引(EI)收录期刊
  • Scopus数据库收录期刊
HAN Gang, ZHAO Qi-hua, PENG She-qin. Geomechanical model for asymmetric distribution of deep-seated crack[J]. Chinese Journal of Geotechnical Engineering, 2013, 35(11): 2123-2130.
Citation: HAN Gang, ZHAO Qi-hua, PENG She-qin. Geomechanical model for asymmetric distribution of deep-seated crack[J]. Chinese Journal of Geotechnical Engineering, 2013, 35(11): 2123-2130.

Geomechanical model for asymmetric distribution of deep-seated crack

More Information
  • Received Date: January 04, 2013
  • Published Date: November 19, 2013
  • The spatial distribution, deformation type and geomechanical model of asymmetric deep-seated crack (DSC) are analyzed. Taking Baihetan Hydropower Station as a typical example, the spatial distribution characteristics, deformation characteristics and deformation types are investigated by means of the integration methods of field investigation and fine description. Furthermore, a geomechanical model for DSC is proposed based on the view of energy evolution process. The spatial distribution range of DSC is between about 50 m and 150 m in vertical direction and horizontal direction from the surface of rock slope, and is located in the influence range of stress concentration of valley bottom. According to the deformation characteristics, the deformation types of DSC can be divided into three ones: tensile type, tensile-shear type and slippage-splitting type. The rock mass of the left bank has experienced several cyclic loading-unloading processes accompanied by the migration-incision evolution process of Jinsha River at dam site. Different from that of the right bank, the energy evolution process of the left bank has three significant differences: high storage, high dissipation and high strength degradation degree, which are the primary reason of asymmetric distribution of DSC. The formation-driving force of DSC is the tensile stress caused by differential rebound or stress concentration, and the slippage of shear belt makes DSC remarkable. The geomechanical model of asymmetric DSC can be divided into two types: one type is based on tectonic discontinuities and intact rock bridge; and the other is based on shear belt slippage. The formation process can be summarized into three stages successively: damage and strength degradation, local tensile stress formation and slippage splitting.
  • [1]
    GB—50287—2006水力发电工程地质勘察规范[S]. 2008. (GB—50287—2006 Code for hydropower engineering geological investigation[S]. 2008. (in Chinese))
    [2]
    宋胜武, 冯学敏, 向柏宇, 等. 西南水电高陡岩石边坡工程关键技术研究[J]. 岩石力学与工程学报, 2011, 30(1): 1-22. (SONG Sheng-wu, FENG Xue-min, XIANG Bai-yu, et al. Research on key technologies for high and steep rock slopes of hydropower engineering in Southwest China[J]. Chinese Journal of Rock Mechanics and Engineering, 2011, 30(1): 1-22. (in Chinese))
    [3]
    韩文峰. 黄河黑山峡大柳树松动岩体工程地质研究[M]. 兰州: 甘肃科学技术出版社, 1993. (HAN Wen-feng. Research on the geology engineering of dynamo-relaxed rock mass at Heishan Gorge on Yellow River[M]. Lanzhou: Gansu Science and Technology Press, 1993. (in Chinese))
    [4]
    王兰生, 李天斌, 赵其华. 浅生时效构造与人类工程[M]. 北京: 地质出版社, 1994. (WANG Lan-sheng, LI Tian-bin, ZHAO Qi-hua. Epigenetic time-dependent structure and human engineering[M]. Beijing: Geology Press, 1994. (in Chinese))
    [5]
    杨永明. 苗家坝水电站坝区边坡典型楔形体的变形破坏特征[J]. 甘肃电力, 1995, 2: 28-33. (YANG Yong-ming. Deformation characteristics of typical wedge block of Miaojiaba hydropower station[J]. Gansu Electric Power, 1995, 2: 28-33. (in Chinese))
    [6]
    王士天, 严 明, 黄润秋. 高边坡变形破坏机制及稳定性评价[M]. 成都: 西南交通大学出版社, 1994. (WANG Shi-tian, YAN Ming, HUANG Run-qiu. High slope deformation and failure mechanism and stability evaluation[M]. Chengdu: Southwest Jiaotong University Press, 1994. (in Chinese))
    [7]
    王士天, 黄润秋, 李渝生, 等. 雅砻江锦屏水电站重大工程地质研究[M]. 成都: 成都科技大学出版社, 1998. (WANG Shi-tian, HUANG Run-qiu, LI Yu-sheng. Major engineering geology research of Jinping hydropower station at Yalong River[M]. Chengdu: Chengdu University of Science and Technology Press, 1998. (in Chinese))
    [8]
    黄润秋, 严 明, 陈龙生, 等. 复杂反倾向岩质高边坡深部裂缝形成机理分析[J]. 成都理工学院学报, 2001, 28(增刊): 321-327. (HUANG Run-qiu, YAN Ming, CHEN Long-sheng, et al. A study on the mechanism of deep unloading fissures in a high slope with anti-dipping rock beds[J]. Journal of Chengdu University of Technology, 2001, 28(S0): 321-327. (in Chinese))
    [9]
    严 明, 黄润秋, 徐佩华. 某水电站坝前左岸高边坡深部破裂形成机制分析[J]. 成都理工大学学报(自然科学版), 2005, 32(6): 609-613. (YAN Ming, HUANG Run-qiu, XU Pei-hua. Research on the deep-seated deformation mechanism of the left bank slope in the front of a dam, Sichuan, China[J]. Journal of Chengdu University of Technology(Science & Technology Edition), 2005, 32(6): 609-613. (in Chinese))
    [10]
    祁生文, 伍法权, 兰恒星. 锦屏一级水电站普斯罗沟左岸深部裂缝成因的工程地质分析[J]. 岩土工程学报, 2002, 24(5): 596-599. (QI Sheng-wen, WU Fa-quan, LAN Heng-xing. Study on the mechanism of the deep fractures of the left abutment slope at the Jinping first stage hydropower station[J]. Chinese Journal of Geotechnical Engineering, 2002, 24(5): 596-599. (in Chinese))
    [11]
    祁生文, 伍法权. 锦屏一级水电站普斯罗沟左岸深部裂缝变形模式[J]. 岩土力学, 2002, 23(6): 817-820. (QI Sheng-wen, WU Fa-quan. Deep fracture deformation models of pusiluogou left abutment slope at Jinping first stage hydropower station[J]. Rock and Soil Mechanics, 2002, 23(6): 817-820. (in Chinese))
    [12]
    祁生文, 伍法权, 丁振明, 等. 从工程地质类比的角度看锦屏一级水电站左岸深部裂缝的形成[J]. 岩石力学与工程学报, 2004, 23(8): 1380-1384. (QI Sheng-wen, WU Fa-quan, DING Zhen-ming, et al. Study on mechanism of deep fractures of Jinping first stage hydropower station by engineering geology analogy[J]. Chinese Journal of Rock Mechanics and Engineering, 2004, 23(8): 1380-1384. (in Chinese))
    [13]
    QI Sheng-wen, WU Fa-quan, ZHANG Yan-fu, et al. Mechanism of deep cracks in the left bank slope of Jinping first stage hydropower station[J]. Engineering Geology, 2004, 73: 129-144.
    [14]
    QI Sheng-wen, WU Fa-quan, ZHOU Yuan-de, et al. Influence of deep seated discontinuities on the left slope of Jinping I Hydropower Station and its stability analysis[J]. Bulletin of Engineering Geology and the Environment, 2010, 69: 333-342.
    [15]
    祁生文, 伍法权, 宋胜武, 等. “锦屏深裂缝”现象及其工程地质意义[C]// 第三届全国水工岩石力学学术会议论文集. 上海: 同济大学出版社, 2010. (QI Sheng-wen, WU Fa-quan, SONG Sheng-wu, et al. Deep-seated crack of Jinping first hydropower station and engineering geological significance[C]// The 3rd National Conference on Hydraulic Rock Mechanics Academic. Shanghai: Tongji University Press, 2010. (in Chinese))
    [16]
    伍法权, 祁生文, 刘 彤. 高地应力条件下边坡岩体卸荷变形的两种表现形式[J]. 工程地质学报, 2007, 15(增刊2): 60-67. (WU Fa-quan, QI Sheng-wen, LIU Tong. Two types of unloading deformation of rock slopes under high geostress condition[J]. Journal of Engineering Geology, 2007, 15(S2): 60-67. (in Chinese))
    [17]
    李愿军. 深部裂缝带——一种新的地震构造样式[J]. 中国工程科学, 2006, 8(4): 12-19. (LI Yuan-jun. Deep-seated rupture zone: A new seismotectonic style[J]. Engineering Science, 2006, 8(4): 12-19. (in Chinese))
    [18]
    李 玶, 李愿军, 杨美娥, 等. 雅砻江普斯罗坝址深部裂缝带成因的探讨[J]. 中国工程科学, 2007, 9(3): 11-20. (LI Ping, LI Yuan-jun, YANG Mei-e, et al. Discussion on the origin of deep-fissure zones at the site of Pusiluo dam,Yalongjiang River[J]. Engineering Science, 2007, 9(3): 11-20. (in Chinese))
    [19]
    安关峰, 伍法权. 锦屏水电站左坝肩岩体深卸荷带成因分析[J]. 岩土力学, 2003, 24(2): 300-303. (AN Guan-feng, WU Fa-quan. Formation cause analysis of deep unload band of rock mass in left dam shoulder of Jinping hydropower station[J]. Rock and Soil Mechanics, 2003, 24(2): 300-303. (in Chinese))
    [20]
    谭成轩, 张 鹏, 郑汉淮, 等. 雅砻江锦屏一级水电站坝址区实测地应力与重大工程地质分析[J]. 工程地质学报, 2007, 16(2): 162-168. (TAN Cheng-xuan,ZHANG Peng,ZHENG Han-huai,et al. An analysis on in-situ crustal stress measurements and major engineering geology issues at the dam site area of Jinping first stage hydropower station[J]. Journal of Engineering Geology, 2007, 16(2): 162-168. (in Chinese))
    [21]
    荣 冠, 朱焕春, 王思敬. 锦屏一级水电站左岸边坡深部裂缝成因初探[J]. 岩石力学与工程学报, 2008, 27(增刊1): 2855-2863. (RONG Guan, ZHU Huan-chun, WANG Si-jing. Primary research on mechanism of deep fractures formation in left bank of Jinping first stage hydropower station[J]. Chinese Journal of Rock Mechanics and Engineering, 2008, 27(S1): 2855-2863. (in Chinese))
    [22]
    王小群, 王兰生, 徐 进. 西南某水电站岸坡深裂缝形成机制的物理模拟试验[J]. 岩土工程学报, 2004, 26(3): 389-392. (WANG Xiao-qun, WANG Lan-sheng, XU Jin. Physical experiments on the formation mechanism of the deep seated fracture at abutment slope of a southwest hydropower station[J]. Chinese Journal of Geotechnical Engineering, 2004, 26(3): 389-392. (in Chinese))
    [23]
    王兰生. 地壳浅表圈层与人类工程[M]. 北京: 地质出版社, 2004. (WANG Lan-sheng. Epigenetic sphere of earth crust and human being project[M]. Beijing: Geological Publishing House, 2004. (in Chinese))
    [24]
    王兰生. 地壳的浅表生改造与时效变形[M]//中国工程地质世纪成就. 北京: 地质出版社, 2004. (WANG Lan-sheng. Epigentic time-dependent structure and deformation[M]// Achievement of the Engineering Geology of China in the 20th Century. Beijing: Geological Publishing House, 2004. (in Chinese))
    [25]
    王兰生, 李文纲, 孙志云. 岩体卸荷与水电工程[J]. 工程地质学报, 2008, 16(2): 145-154. (WANG Lan-sheng, LI Wen-gang, SUN Zhi-yun. Rock mass unloading in hydroelectric project[J]. Journal of Engineering Geology, 2008, 16(2): 145-154. (in Chinese))
    [26]
    陈 鸿, 赵其华, 陈卫东. 瀑布沟水电站库首右岸深部裂缝成因分析[J]. 工程地质学报, 2005, 13(3): 289-293. (CHEN Hong, ZHAO Qi-hua, CHEN Wei-dong. On the genetic of the deep fractures of the Pubugou hydropower station[J]. Journal of Engineering Geology, 2005, 13(3): 289-293. (in Chinese))
    [27]
    陈 鸿, 赵其华, 陈卫东. 某水电站库首右岸拉裂变形体形成机理研究[J]. 防灾减灾工程学报, 2005, 25(1): 25-29. (CHEN Hong, ZHAO Qi-hua, CHEN Wei-dong. Forming mechanism of the tension-displaced body of a hydropower station slope[J]. Journal of Disasters Prevention and Mitigation Engineering, 2005, 25(1): 25-29. (in Chinese))
    [28]
    王 瑜, 赵其华. 某电站坝区左岸深部裂缝特征及成因机理浅析[J]. 长江科学院院报, 2010, 27(4): 49-52. (WANG Yu, ZHAO Qi-hua. Features and Formation mechanism of deep fracture in left bank slope of some hydropower station dam site[J]. Journal of Yangtze River Scientific Research Institute, 2010, 27(4): 49-52. (in Chinese))
    [29]
    韩 刚, 赵其华, 彭社琴. 白鹤滩水电站坝区岩体深部破裂特征及成因机制[J]. 吉林大学学报(地球科学版), 2011, 41(2): 498-504. (HAN Gang, ZHAO Qi-hua, PENG She-qin. Characteristics and formation mechanism of rock mass deep Fractures at dam area of the Baihetan hydropower station[J]. Journal of Jilin University(Earth Science Edition), 2011, 41(2): 498-504. (in Chinese))
    [30]
    王思敬. 地球内外动力耦合作用于重大地质灾害的成因初探[J]. 工程地质学报, 2002, 10(2): 115-117. (WANG Si-jing. Coupling of earth’s endogenic and exogenic geological processes and origins on serious geological disasters[J]. Journal of Engineering Geology, 2002, 10(2): 115-117. (in Chinese))
    [31]
    黄润秋. 中国西南岩石高边坡的主要特征及其演化[J]. 地球科学进展, 2005, 20(3): 292-297. (HUANG Run-qiu. Main characteristics of high rock slopes in Southwestern China and their dynamitic evolution[J]. Advances in Earth Science, 2005, 20(3): 292-297. (in Chinese))
    [32]
    LAJTAI E Z. A mechanistic view of some aspects of jointing in rocks[J]. Tectonophysics, 1977, 38(3/4): 327-338
    [33]
    张倬元, 王士天, 王兰生. 工程地质分析原理[M]. 北京: 地质出版社, 1994. (ZHANG Zhuo-yuan, WANG Shi-tian, WANG Lan-sheng. Engineering geological analysis principle[M]. Beijing: Geological Publishing House, 1994. (in Chinese))
    [34]
    谢和平, 彭瑞东, 鞠 杨. 岩石变形破坏过程中的能量耗散分析[J]. 岩石力学与工程学报, 2004, 23(21): 3565-3570. (XIE He-ping, PENG Rui-dong, JU Yang. Energy dissipation of rock deformation and fracture[J]. Chinese Journal of Rock Mechanics and Engineering, 2004, 23(21): 3565-3570. (in Chinese))
    [35]
    谢和平, 彭瑞东, 鞠 杨, 等. 岩石破坏的能量分析初探[J]. 岩石力学与工程学报, 2005, 24(15): 2603-2608. (XIE He-ping, PENG Rui-dong, JU Yang, et al. On energy analysis of rock failure[J]. Chinese Journal of Rock Mechanics and Engineering, 2005, 24(15): 2603-2608. (in Chinese))
    [36]
    谢和平, 鞠 杨, 黎立云. 基于能量耗散与释放原理的岩石强度与整体破坏准则[J]. 岩石力学与工程学报, 2005, 24(17): 3003-3010. (XIE He-ping, JU Yang, LI Li-yun. Criteria for strength and structural failure of rocks based on energy dissipation and energy release principles[J]. Chinese Journal of Rock Mechanics and Engineering, 2005, 24(17): 3003-3010. (in Chinese))
    [37]
    谢和平, 鞠 杨, 黎立云, 等. 岩体变形破坏过程的能量机制[J]. 岩石力学与工程学报, 2008, 27(9): 1729-1740. (XIE He-ping, JU Yang, LI Li-yun, et al. Energy mechanism of deformation and failure of rock masses[J]. Chinese Journal of Rock Mechanics and Engineering, 2008, 27(9): 1729-1740. (in Chinese))
  • Related Articles

    [1]LÜ Xi-lin, PANG Bo, ZHU Chang-gen, ZHANG Jia-feng, XU Ke-feng, MA Quan. Physical model tests on load-sharing characteristics of piles and soils in pile- supported embankment[J]. Chinese Journal of Geotechnical Engineering, 2022, 44(S2): 50-53. DOI: 10.11779/CJGE2022S2011
    [2]YANG Guang-qing, WANG Xin, WANG Xi Zhao, JIN Jin Zhao, ZHANG Chao. Field tests on mechanical behavior of pile-supported embankment in soft soil area[J]. Chinese Journal of Geotechnical Engineering, 2022, 44(11): 2089-2096. DOI: 10.11779/CJGE202211015
    [3]WANG Yi-nan, CHEN Mei-jun. Forms of soil arch in GRPS embankment by catenary method[J]. Chinese Journal of Geotechnical Engineering, 2021, 43(S2): 276-279. DOI: 10.11779/CJGE2021S2064
    [4]JIANG Yan-bin, HE Bin, QIAN Ya-jun, WANG Zhang-chun, HE Ning. Deformation of centrifugal modelling process of piled embankments[J]. Chinese Journal of Geotechnical Engineering, 2020, 42(S2): 185-189. DOI: 10.11779/CJGE2020S2033
    [5]XU Chao, ZHANG Xing-ya, HAN Jie, YANG Yang. Trapdoor model tests on impact of loading conditions on soil arching effect[J]. Chinese Journal of Geotechnical Engineering, 2019, 41(4): 726-732. DOI: 10.11779/CJGE201904016
    [6]FU Hai-ping, ZHENG Jun-jie, LAI Han-jiang. Discrete element analysis of the development and evolution of “soil arching” within a piled embankment[J]. Chinese Journal of Geotechnical Engineering, 2017, 39(11): 2050-2057. DOI: 10.11779/CJGE201711013
    [7]FANG Ying-guang, HOU Ming-xun, GU Ren-guo, CHEN Ping. Visual analysis of initiation of soil arching effect in piled embankments[J]. Chinese Journal of Geotechnical Engineering, 2015, 37(9): 1678-1684. DOI: 10.11779/CJGE201509016
    [8]FEI Kang, CHEN Yi, WANG Jun-jun. Experimental study on influence of reinforcing modes on behavior of piled embankment[J]. Chinese Journal of Geotechnical Engineering, 2012, 34(12): 2312-2317.
    [9]LI Zhong-cheng, LIANG Zhi-rong. Soil arching effect and calculation model for soil pressures of passive piles[J]. Chinese Journal of Geotechnical Engineering, 2011, 33(zk1): 106-111.
    [10]CAO Weiping, CHEN Renpeng, CHEN Yunmin. Experimental investigation on soil arching in piled reinforced embankments[J]. Chinese Journal of Geotechnical Engineering, 2007, 29(3): 436-441.

Catalog

    Article views PDF downloads Cited by()
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return