• 全国中文核心期刊
  • 中国科技核心期刊
  • 美国工程索引(EI)收录期刊
  • Scopus数据库收录期刊
ZHAO Yan-lin, WAN Wen, WANG Wei-jun, WANG Min, PENG Qing-yang. Fracture experiments on ordered multi-crack body in rock-like materials under uniaxial compression and numerical simulation of wing cracks[J]. Chinese Journal of Geotechnical Engineering, 2013, 35(11): 2097-2109.
Citation: ZHAO Yan-lin, WAN Wen, WANG Wei-jun, WANG Min, PENG Qing-yang. Fracture experiments on ordered multi-crack body in rock-like materials under uniaxial compression and numerical simulation of wing cracks[J]. Chinese Journal of Geotechnical Engineering, 2013, 35(11): 2097-2109.

Fracture experiments on ordered multi-crack body in rock-like materials under uniaxial compression and numerical simulation of wing cracks

More Information
  • Received Date: December 06, 2012
  • Published Date: November 19, 2013
  • In order to study the rules of rock bridge rupture and the influences of occurrence characteristics of intermittent cracks on strength of rock mass, ordered multi-crack bodies are made using cement mortar. Fracture failure experiments on ordered multi-crack body under uniaxial compression are conducted. It is concluded that the transfixion pattern of wing tensile cracks, transfixion pattern of tension-shear cracks between different rows and oblique shear crack transfixion pattern in the same row are the main rapture modes for the ordered multi-crack body. The representative peak strength of specimens decreases with the increasing number of cracks. When the crack angle is small, such as 25°and 45°, the residual strength increases. While the crack angle is large, such as 75°and 90°, the crack density has little effect on the representative peak strength of specimens, and the characteristics of residual strengths are less evident. When the crack density is constant, the representative peak strength of specimens shows an increasing trend when the crack angles change from 25°to 90°. The pattern of main control crack coalescence is proposed. The transfixion of tension-shear cracks between different rows along the clinodiagonal is the pattern of the main control crack coalescence when the angle is 25°. While the crack angle is 45°, the patterns of the main control crack coalescence include two types, which are transfixion of wing cracks and transfixion of coplanar secondary shear cracks along the clinodiagonal. The characteristics of stress-strain concentration in crack tip reveal the fact that the essential reason of initiation of wing cracks is the concentration of tensile strain at crack tip, while the state of biaxial compressive stress-strain concentration near the main
  • [1]
    李 宁, 张 平, 陈蕴生. 裂隙岩体试验研究进展与思考[C]// 中国岩石力学与工程学会第七次大会论文集. 北京:中国科学技术出版社, 2002: 63-69. (LI Ning, ZHANG Ping, CHEN Yun-sheng. The headway and think of the experimentation of the cranny rock mass[C]// The seventh conference proceedings of Chinese Journal of Rock Mechanics and Engineering. Beijing: China Science and Technology Press, 2002: 63-69. (in Chinese))
    [2]
    巩 磊, 曾联波, 苗凤彬, 等. 分形几何方法在复杂裂缝系统描述中的应用[J]. 湖南科技大学学报(自然科学版), 2012, 27(4): 6-10. (GONG Lei, ZENG Lian-bo, MIAO Feng-bin, et al. Application of fractal geometry on the description of complex fracture systems[J]. Journal of Huanan University of Science & Technology (Natural Science Edition), 2012, 27(4): 6-10. (in Chinese))
    [3]
    张玉军. 节理岩体等效模型及其数值计算和室内试验[J]. 岩土工程学报, 2006, 28(1): 29-32. (ZHANG Yu-jun. Equivalent model and numerical analysis and laboratory test for jointed rock masses[J]. Chinese Journal of Geotechnical Engineering, 2006, 28(1): 29-32. (in Chinese))
    [4]
    张 波, 李术才, 张敦福, 等. 含充填节理岩体相似材料试件单轴压缩力学性能试验及断裂损伤研究[J]. 岩土力学, 2012, 33(6): 149-154. (ZHANG Bo, LI Shu-cai, ZHANG Dun-fu, et al. Theuniaxial compression mechanical property test, fracture and damage analysis of similar material jointed rock masswith filled crack[J]. Rock and Soil Mechanics, 2012, 33(6): 149-154. (in Chinese))
    [5]
    ROBET A, EINSTEIN H H. Fracture coalescence in rock-type material under uniaxial and biaxial compression[J]. International Journal of Rock Mechanics and Mining Sciences, 1998, 35(7): 863-888.
    [6]
    VASARHELYI B, ROBERT A. Modeling of crack initiation , Propagation and coalescence in uniaxial compression[J]. Rock Mechanics and Rock Engineering, 2000, 33(2): 119-139.
    [7]
    张庆伦, 赵延林, 刘 杰, 等. 剪切作用下类岩石断续裂纹岩桥破裂试验与数值分析[[J]. 矿业工程研究, 2012, 27(2): 31-36. (ZHANG Qing-lun, ZHAO Yan-lin, LIU Jie, et al. Experimental and simulation analysis on fracture of rock bridge under shear pressure[J]. Mineral Engineering Research, 2012, 27(2): 31-36. (in Chinese))
    [8]
    李银平, 王元汉, 陈龙珠, 等. 含预制裂纹大理岩的压剪试验分析[J]. 岩土工程学报, 2004, 26(1): 120-124. (LI Yin-ping, WANG Han-yuan, CHEN Long-zhu, et al. Experimental research on pre-existing cracks in marble under compression[J]. Chinese Journal of Geotechnical Engineering. 2004, 26(1): 120-124. (in Chinese))
    [9]
    WONG R H C, CHAU K T, TANG C A, et al. Analysis of crack coalescence in rock-Part I: Experimental approach [J]. International Journal of Rock Mechanics and Mining Sciences, 2001, 38: 909-924.
    [10]
    黎立云, 车法星, 卢晋福, 等. 单压下类岩材料有序多裂 纹体的宏观力学性能[J]. 北京科技大学学报, 2001, 23(3): 199-203. (LI Li-yun, CHE Fa-xing, LU Jin-fu, et al. Macromechanical properties of regular cracks body in rock-like materials under uniaxial compression[J]. Journal of University of Science and Technology Beijing, 2001, 23(3): 199-203. (in Chinese))
    [11]
    SAGONG M, BOBET A. Coalescence of multiple flaws in a rock-model material in uniaxial compression[J]. International Journal of Rock Mechanics and Mining Sciences, 2002, 39(2): 229-241
    [12]
    梁正召, 李连崇, 唐世斌, 等. 岩石三维表面裂纹扩展机理数值模拟研究[J]. 岩土工程学报, 2011, 33(10): 1615-1622. (LIANG Zheng-zhao, LI Lian-chong, TANG Shi-bin, et al. 3D numerical simulation of growth of surface crack of rock specimens[J]. Chinese Journal of Geotechnical Engineering, 2011, 33(10): 1615-1622. (in Chinese))
    [13]
    李九红, 王 雪, 赵 钦. 无网格伽辽金法在裂纹扩展中的应用研究[J]. 西安理工大学学报, 2008, 24(4): 476-479. (LI Jiu-hong, WANG Xue, ZHAO Qin. The applied study of the element free galerk in method to crack propagation[J]. Journal of Xi'an University of Technology, 2008, 24(4): 476-479. (in Chinese))
    [14]
    MARC D, HUANG N D. A meshless method with enriched weight functions for fatigue crack growth[J]. International Journal for Numerical Methods in Engineering, 2004, 59: 1945-1961.
    [15]
    焦玉勇, 张秀丽, 刘泉声, 等. 用非连续变形分析方法模拟岩石裂纹扩展[J]. 岩石力学与工程学报, 2007, 26(4): 682-691. (JIAO Yu-yong, ZHANG Xiu-li, LIU Quan-sheng, et al. Simulation of rock crack propagation using discontinuous deformation analysis method[J]. Chinese Journal of Rock Mechanics and Engineering, 2007, 26(4): 682-691. (in Chinese))
    [16]
    王水林, 冯夏庭, 葛修润. 高阶流形方法模拟裂纹扩展研究[J]. 岩土力学, 2003, 24(4): 622-625. (WANG Shui-lin, FENG Xia-ting, GE Xiu-run. Study on crack propagation modeling by high order manifold method[J]. Rock and Soil Mechanics, 2003, 24(4): 622-625. (in Chinese))
    [17]
    HORII H, NEMAT-NASSER S. Compression-induced microcrack growth in brittle solids: axial splitting and shear failure[J]. Journal of Geophysical Research, 1985, 90: 3105-3125.
    [18]
    ASHBY M F, HALLAM S D. The failure of brittle solids containing small cracks under compressive stress states[J]. Acta Metall, 1986, 34(3): 497-510.
    [19]
    赵延林. 裂隙岩体渗流—损伤—断裂耦合与工程应用[M].徐州: 中国矿业大学出版社, 2012. (ZHAO Yan-lin. Seepage-damage-fracture coupling of fracture rock mass and its application[M]. Xuzhou: China University of Mining and Technology Press, 2012. (in Chinese))
    [20]
    王 敏, 万 文, 赵延林. 双轴拉伸条件下张开型裂纹的数值模拟[J]. 矿业工程研究, 2013, 28(1): 7-10. (WANG Min, WAN Wen, ZHAO Yan-lin. Numerical simulation calculation of model I crack under biaxial tension[J]. Mineral Engineering Research, 2013, 28(1): 7-10. (in Chinese))
    [21]
    樊赟赟, 王思敬, 王恩志. 岩土材料剪切破坏点安全系数的研究[J]. 岩土力学, 2009, 30(增刊2): 200-203. (FAN Yun-yun, WANG Si-jing, WANG En-zhi. Research on point safety factor of shear failure geomaterials[J]. Rock and Soil Mechanics, 2009, 30(2): 200-203. (in Chinese))
    [22]
    赵延林, 万 文, 王卫军, 等. 类岩石裂纹压剪流变断裂与亚临界扩展试验及破坏机制[J]. 岩土工程学报, 2012, 34(6): 1050-1059. (ZHAO Yan-lin, WAN Wen, WANG Wei-jun, et al. Rrheologic fracture failure test of compressive -shear rock-like cracks and subcritical crack propagation test and fracture mechanism[J]. Chinese Journal of Geotechnical Engineering, 2012, 34(6): 1050-1059. (in Chinese))
    [23]
    王 敏, 万 文, 赵延林, 等. 压剪条件下岩体剪切力研究[J]. 矿业工程研究, 2013, 28(3): 53-56. (WANG Min, WAN Wen, ZHANG Yan-lin, et al. The strear stress study of rock mass under compression-shear[J]. Mineral Engineering Research, 2013, 28(3): 53-56. (in Chinese))
  • Related Articles

    [1]LÜ Xi-lin, PANG Bo, ZHU Chang-gen, ZHANG Jia-feng, XU Ke-feng, MA Quan. Physical model tests on load-sharing characteristics of piles and soils in pile- supported embankment[J]. Chinese Journal of Geotechnical Engineering, 2022, 44(S2): 50-53. DOI: 10.11779/CJGE2022S2011
    [2]YANG Guang-qing, WANG Xin, WANG Xi Zhao, JIN Jin Zhao, ZHANG Chao. Field tests on mechanical behavior of pile-supported embankment in soft soil area[J]. Chinese Journal of Geotechnical Engineering, 2022, 44(11): 2089-2096. DOI: 10.11779/CJGE202211015
    [3]WANG Yi-nan, CHEN Mei-jun. Forms of soil arch in GRPS embankment by catenary method[J]. Chinese Journal of Geotechnical Engineering, 2021, 43(S2): 276-279. DOI: 10.11779/CJGE2021S2064
    [4]JIANG Yan-bin, HE Bin, QIAN Ya-jun, WANG Zhang-chun, HE Ning. Deformation of centrifugal modelling process of piled embankments[J]. Chinese Journal of Geotechnical Engineering, 2020, 42(S2): 185-189. DOI: 10.11779/CJGE2020S2033
    [5]XU Chao, ZHANG Xing-ya, HAN Jie, YANG Yang. Trapdoor model tests on impact of loading conditions on soil arching effect[J]. Chinese Journal of Geotechnical Engineering, 2019, 41(4): 726-732. DOI: 10.11779/CJGE201904016
    [6]FU Hai-ping, ZHENG Jun-jie, LAI Han-jiang. Discrete element analysis of the development and evolution of “soil arching” within a piled embankment[J]. Chinese Journal of Geotechnical Engineering, 2017, 39(11): 2050-2057. DOI: 10.11779/CJGE201711013
    [7]FANG Ying-guang, HOU Ming-xun, GU Ren-guo, CHEN Ping. Visual analysis of initiation of soil arching effect in piled embankments[J]. Chinese Journal of Geotechnical Engineering, 2015, 37(9): 1678-1684. DOI: 10.11779/CJGE201509016
    [8]FEI Kang, CHEN Yi, WANG Jun-jun. Experimental study on influence of reinforcing modes on behavior of piled embankment[J]. Chinese Journal of Geotechnical Engineering, 2012, 34(12): 2312-2317.
    [9]LI Zhong-cheng, LIANG Zhi-rong. Soil arching effect and calculation model for soil pressures of passive piles[J]. Chinese Journal of Geotechnical Engineering, 2011, 33(zk1): 106-111.
    [10]CAO Weiping, CHEN Renpeng, CHEN Yunmin. Experimental investigation on soil arching in piled reinforced embankments[J]. Chinese Journal of Geotechnical Engineering, 2007, 29(3): 436-441.

Catalog

    Article views (380) PDF downloads (952) Cited by()
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return