Citation: | CHENG Xiao-hui, MA Qiang, YANG Zuan, ZHANG Zhi-chao, LI Meng. Dynamic response of liquefiable sand foundation improved by bio-grouting[J]. Chinese Journal of Geotechnical Engineering, 2013, 35(8): 1486-1495. |
[1] |
Towhata I. Geotechnical earthquake engineering[M]. Berlin: Springer Berlin-Heidelberg, 2008.
Stocks-Fischer S, Galinat J K, Bang S S. Microbiological precipitation of CaCO3[J]. Soil Biology and Biochemistry, 1999, 31: 1563-1571. Castanier S, Le Metayer-Levrel G, Perthuisot J P. Ca-carbonates precipitation and limestone genesis-the microbiogeologist point of view[J]. Sediment Geology, 1999, 126: 9-23. Bang S S, Galinat J K, Ramakrishnan V. Calcite precipitation induced by polyurethane-immobilized Bacillus pasteurii[J]. Enzyme and Microbial Technology, 2001, 28: 404-409. Whiffin V S. Microbial CaCO3 precipitation for the production of Biocement[D]. Western Australia: Murdoch University, 2004. Nemati M, Voordouw G. Modification of porous media permeability, using calcium carbonate produced enzymatically in situ[J]. Enzyme and Microbial Technology, 2003, 33: 635-642. WARREN L A, MAURICE P A, PARMAR N,et al. Microbially mediated calcium carbonate precipitation: implications for interpreting calcite precipitation and for solid-phase capture of inorganic contaminants[J]. Geomicrobiology Journal, 2001, 18: 93-115. Al-Thawadi S M. High strength in-situ biocementation of soil by calcite precipitating locally isolated ureolytic bacteria[D]. Western Australia: Murdoch University, 2008. Harkes M P, van Paassen L A, Booster J L,et al. Fixation and distribution of bacterial activity in sand to induce carbonate precipitation for ground reinforcement[J]. Ecological Engineering, 2010, 36: 112-117. Whiffin V S, Van Paassen L A, Harkes M P. Microbial carbonate precipitation as a soil improvement technique[J]. Geomicrobiology Journal, 2007, 24(5): 417-423. Van Paassen L A, Ghose R, van der Linden T J M,et al. Quantifying bio-mediated ground improvement by ureolysis: a large scale biogrout experiment[J]. Journal of Geotechnical and Geoenvironmental Engineering, 2010, 136: 1721-1728. DeJong J T, Fritzges M B, Nusslein K. Microbially induced cementation to control sand response to undrained shear[J]. Journal of Geotechnical and Geoenvironmental Engineering, 2006, 132(11): 1381-1392. Burbank M B, Weaver T J, Green T L,et al. Precipitation of calcite by indigenous microorganisms to strengthen liquefiable soils[J]. Geomicrobiology Journal, 2011, 28: 301-312. YANG Z, CHENg X H, LI M. Engineering properties of micp-bonded sandstones used for historical masonry building restoration[C]// ASCE Geo Frontiers 2011: Advances in Geotechnical Engineering. Dallas, 2011: 4031-4040. 沈吉云. 微生物成因土工材料实验及应用研究[D]. (北京:清华大学), 2009.(SHEN Ji-yun. Experiments and Applications of Bio-Geomaterials[D]. Beijing: Tsinghua University, 2009. (in Chinese)) Wei-Soon N, Min-Lee L, Siew-Ling H. An overview of the factors affecting microbial-induced calcite precipitation and its potential application in soil improvement[J]. World Academy of Science, Engineering and Technology, 2012, 62: 723-729. AL QABANY A, SOGA K, SANTAMARINA C. Factors affecting efficiency of microbially induced calcite precipitation[J]. ASCE Journal of Geotechnical and Geoenvironmental Engineering, 2012, 138: 992-1001. Martinez B C, Barkouki T H, DeJong J T,et al. Upscaling of microbial induced calcite precipitation in 0.5 m columns: experimental and modeling results[C]// ASCE Geo Frontiers 2011: Advances in Geotechnical Engineering. 2011: 4049-4059. van Wijngaarden W K, Vermolen F J, van Meurs G A M,et al. Modelling biogrout: a new ground improvement method based on microbial-induced carbonate precipitation[J]. Transport in Porous Media, 2011, 87(2): 397-420. Bachmeier K L, Williams A E, Warmington J R,et al. Urease activity in microbiologically-induced calcite precipitation[J]. Journal of Biotechnology, 2002, 93: 171-181. LI m, CHENG X H, GUO h x. Heavy metal removal by biomineralization of urease producing bacteria isolated from soil[J]. International Biodeterioration & Biodegradation, 2012, 76: 81-85. LI m, CHENG X H, GUO h x. Application of response surface methodology for carbonate precipitation production induced by a mutant strain of Sporosarcina pasteurii[C]// ASCE Geo Frontiers 2011: Advances in Geotechnical Engineering. Dallas, 2011: 4079-4088. 李 萌. 微生物诱导的土木工程加固与防渗机理研究[D]. 北京: 清华大学, 2011.(LI Meng. The microbial induced civil engineering reinforcement and impermeability mechanism research[D]. Beijing: Tsinghua University, 2009. (in Chinese)) 程晓辉, 杨 钻. 利用产尿酶微生物制备高强微生物砂浆的方法: 中国, 201210464480.8[P]. 2012.(CHENG Xiao-hui, YANG Z. High strength microbial mortar production and control method: China patent, 201210464480.8[P]. 2012. (in Chinese)) Van der Ruyt M, van der Zon W, JONES D. Biological in situ reinforcement of sand in near-shore areas[J]. Proceedings of the Institution of Civil Engineers- Geotechnical Engineering, 2009, 162: 81-83. Gallaghera P M, Mitchell J K. Influence of colloidal silica grout on liquefaction potential and cyclic undrained behavior of loose sand[J]. Soil Dynamics and Earthquake Engineering, 2002, 22: 1017-1026. Toru S, Hiroshi Y, Manabu M. Liquefaction process of sand during cyclic loading[J]. Japanese Society of Soil Mechanics and Foundation Engineering, Soils and foundations, 1972, 12(1): 1-16. Motamed R, Towhata I. Mitigation measures for pile groups behind quay walls subjected to lateral flow of liquefied soil: Shake table model tests[J]. Soil Dynamics and Earthquake Engineering, 2010, 30: 1043-1060. |