Citation: | HUANG Wen-xiong, SHEN Jian. Comparison among some typical constitutive models for soils based on stress response envelopes[J]. Chinese Journal of Geotechnical Engineering, 2012, 34(3): 508-515. |
[1] |
HASHIGUCHI K. Constitutive equations of elastoplastic materials with elastic-plastic transition[J]. Journal of Applied Mechanics, ASME, 1980, 47 (2): 266 – 272.
|
[2] |
GUDEHUS G. A comparison of some constitutive laws for soils under radially symmetric loading and unloading[C]// WITTKE W, ed. Proceedings of the 3rd International Conference on Numerical Methods in Geomechanics. Rotterdam: A. A. Balkema, 1979: 1309 – 1324.
|
[3] |
WU W, KOLYMBAS D. Numerical testing of the stability criterion for hypoplastic constitutive equations[J]. Mechanics of Materials, 1990, 9 (3): 245 – 253.
|
[4] |
TAMAGNINI C, VIGGIANI G, CHAMBON R, et al. Evaluation of different strategies for the integration of hypoplastic constitutive equations: application to the CLoE model[J]. Mechanics of Cohesive-Frictional Materials, 2000, 5 (4): 263 – 289.
|
[5] |
HUANG W X, WU W, SUN D A, et al. A simple hypoplastic model for normally consolidated clay[J]. Acta Geotechnica, 2006, 1 (1):15 – 27.
|
[6] |
ROYIS P, DOANH T. Theoretical analysis of strain response envelopes using incrementally non-linear constitutive equations[J]. International Journal for Numerical and Analytical Methods in Geomechanics, 1998, 22 (2):97 – 132.
|
[7] |
TAMAGNINI C, CALVETTI F, VIGGIANI G. An assessment of plasticity theories for modeling the incrementally nonlinear behavior of granular soils[J]. Journal of Engineering Mathematics, 2005, 52 (1): 265 – 291.
|
[8] |
DUNCAN J M, CHANG C Y. Nonlinear analysis of stress and strain in soils[J]. Journal of the Soil Mechanics and Foundations Division, ASCE, 1970, 96 (SM5): 1629 – 1653.
|
[9] |
SCHOFIELD A N, WROTH C P. Critical state soil mechanics[M]. London: McGraw-Hill, 1968.
|
[10] |
ROSCOE K H, BURLAND J B. On the generalized stress- strain behavior of “wet” clay[M]// HEYMAN J, LECKIE F A, eds. Engineering Plasticity . Cambridge: Cambridge University Press, 1968: 535 – 609.
|
[11] |
GUDEHUS G. A comprehensive constitutive equation for granular materials[J]. Soils and Foundations, 1996, 36 (1): 1 – 12.
|
[12] |
BAUER E. Calibration of a comprehensive hypoplastic model for granular materials[J]. Soils and Foundations, 1996, 36 (1): 13 – 26.
|
[13] |
DARVE F, LABANIEH S. Incremental constitutive law for sands and clays: simulations of monotonic and cyclic tests[J]. International Journal for Numerical and Analytical Methods in Geomechanics, 1982, 6 (2): 243 – 275.
|
[14] |
TRUESDELL C. Hypo-elasticity[J]. Journal of Rational Mechanics and Analysis, 1955, 4 (1): 83 – 133.
|
[15] |
KOLYMBAS D. Introduction to hypoplasticity[M]. Rotterdam: A. A. Balkema, 2000.
|
[16] |
DAFALIAS Y F. Bounding surface plasticity. I: Mathematical foundation and hypoplasticity[J]. Journal of Engineering Mechanics, ASCE, 1986, 112 (9): 966 – 987.
|
[17] |
HERLE I, GUDEHUS G. Determination of parameters of a hypoplastic constitutive model from properties of grain assemblies[J]. Mechanics of Cohesive-Frictional Materials, 1999, 4 (5): 461 – 486.
|
[18] |
LI X S, DAFALIAS Y F. A constitutive framework for anisotropic sand including non-proportional loading[J]. Géotechnique, 2004, 54 (1): 41 – 55.
|
[19] |
WU W, NIEMUNIS A. Beyond failure in granular materials[J]. International Journal for Numerical and Analytical Methods in Geomechanics, 1997, 21 (3): 153 – 174.
|
[1] | AN Yijing, HAN Pengju, QIN Jiandong, BAI Xiangling, HE Bin, WANG Xiaoyuan. Seismic response analysis of leaning Wenfeng Pagoda considering soil-structure interaction[J]. Chinese Journal of Geotechnical Engineering, 2023, 45(S2): 201-207. DOI: 10.11779/CJGE2023S20028 |
[2] | ZHAO Kai, XIA Gao-xu, WANG Yan-zhen, ZHAO Ding-feng, ZHUANG Hai-yang, CHEN Guo-xing. Three-dimensional loosely coupled effective stress method for seismic soil-structure interactions[J]. Chinese Journal of Geotechnical Engineering, 2022, 44(5): 861-869. DOI: 10.11779/CJGE202205009 |
[3] | LIANG Jian-wen, ZHU Jun. FEM-IBEM coupling method for nonlinear seismic response analysis of underground structures in water-saturated soft soils[J]. Chinese Journal of Geotechnical Engineering, 2018, 40(11): 1977-1987. DOI: 10.11779/CJGE201811003 |
[4] | WANG Guo-bo, YUAN Ming-zhi, MIAO Yu. Review of seismic response of structure-soil-structure interaction system[J]. Chinese Journal of Geotechnical Engineering, 2018, 40(5): 837-847. DOI: 10.11779/CJGE201805008 |
[5] | LI Liang, CUI Zhi-mou, KANG Cui-lan, WANG Xiang-bao. Fluid-solid coupling dynamic model for fluid-saturated porous media in ABAQUS[J]. Chinese Journal of Geotechnical Engineering, 2013, 35(zk2): 281-285. |
[6] | LIANG Yue, CHEN Liang, CHEN Jian-sheng. Mathematical model for piping development considering fluid-solid interaction[J]. Chinese Journal of Geotechnical Engineering, 2011, 33(8): 1265-1270. |
[7] | HUANG Yu, YASHIMA Atsushi, ZHANG Feng. Finite element analysis of pile-soil-structure dynamic interaction in liquefiable site[J]. Chinese Journal of Geotechnical Engineering, 2005, 27(6): 646-651. |
[8] | ZOU Lihua, ZHAO Renda, ZHAO Jianchang. Analysis of the response to earthquake of the pile-soil-isolated structure interaction[J]. Chinese Journal of Geotechnical Engineering, 2004, 26(6): 782-786. |
[9] | Xu Zenghe, Xu Xiaohe. Fluid-solid coupling problem in the liquid extraction at fixed flux[J]. Chinese Journal of Geotechnical Engineering, 1999, 21(6): 737-741. |
[10] | Chen Guoxing, Zai Jinmin, Yang Dong, Ding Dajun. TMD Shock Absorbing Characteristics Considering Soil-Structure Interaction Effects[J]. Chinese Journal of Geotechnical Engineering, 1997, 19(6): 82-87. |