• 全国中文核心期刊
  • 中国科技核心期刊
  • 美国工程索引(EI)收录期刊
  • Scopus数据库收录期刊
LI Yong-qiang. Influences of diameter of thermal probes on effect of decreasing earth temperature and producing cold quantity along Qinghai-Tibet Railway in permafrost area[J]. Chinese Journal of Geotechnical Engineering, 2011, 33(zk1): 503-508.
Citation: LI Yong-qiang. Influences of diameter of thermal probes on effect of decreasing earth temperature and producing cold quantity along Qinghai-Tibet Railway in permafrost area[J]. Chinese Journal of Geotechnical Engineering, 2011, 33(zk1): 503-508.

Influences of diameter of thermal probes on effect of decreasing earth temperature and producing cold quantity along Qinghai-Tibet Railway in permafrost area

More Information
  • Received Date: April 26, 2011
  • Published Date: November 30, 2011
  • Thermal probes, a device to exchange heat with air and liquor convert, have characteristics of no engine loss and highly decreasing earth temperature around the thermal probes. The thermal probes have obvious effects for decreasing earth temperature under the foundation, increasing cold storage of earth foundation and protecting permafrost. It is a simple and suitable engineering measure for protecting permafrost. Now it has been widely used in Qinghai-Tibet Railway in permafrost area. In view of application of the thermal probes in the civil engineering, many researches in China and foreign countries are carried out. Many key technologies of thermal probes are solved, for example, making crafts, trail of model in low temperature, design and calculation and so on. But there are not any father researches on the relation among diameter of thermal probes, effect of decreasing earth temperature and producing cold quantity. In order to solve this kind of problems, a series of experiments in permafrost region along the Qinghai-Tibet Railway are performed. The test content includes three thermal probes with the same length but different diameters in Anduo experimental section. In given conditions, within certain range of diameter of thermal probes, the results show: (1) its producing cold quantity doesn’t increase with the increase of the diameter; (2) there seems to be the same decreasing earth temperature and producing cold quantity with different diameters; (3) after comprehensive consideration, the optimal diameter of thermal probes is 89 mm.
  • [1]
    李永强 . 热棒在青藏高原风火山地区的实测效果分析 [J]. 岩石力学与工程学报 , 2003, 22 ( 增刊 2): 2669 – 2672. (LI Yong-qiang. Analysis of the actual measurement result of thermal probes in fenghuoshan area on qinghai-tibet plateau[J]. Chinese Journal of Rock Mechanics and Engineering, 2003, 22 (S2): 2669 – 2672. (in Chinese))
    [2]
    潘卫东 , 连逢愈 , 邓宏艳 , 等 . 寒区工程中热棒技术的应用原理和前景 [J]. 岩石力学与工程学报 , 2003, 22 ( 增刊 2): 2673 – 2676. (PAN Wei-dong, LIAN Feng-rui, DENG Hong-yan, et al, Application principle and prospect of thermal probes technique in cold region engineering[J]. Chinese Journal of Rock Mechanics and Engineering, 2003, 22 (S2): 2673 – 2676. (in Chinese))
    [3]
    曹元平 . 热棒在青藏铁路试验段中的应用 [J]. 路基工程 , 2003(6): 31 – 34. (CAO Yuan-ping. Application of thermal probes in experimental section of Qinghai-Tibet Railway[J]. Subgrade Engineering, 2003(6): 31 – 34. (in Chinese))
    [4]
    冉 理 , 薛新功 , 包黎明 . 青藏铁路设计中热棒路基的应用及其技术指标 [J]. 冰川冻土 , 2004, 26 ( 增刊 1): 151 – 154. (RAN Li, XUE Xin-gong, BAO Li-ming. Applications and technical characteristics of thermal pipe subgrade in Qinghai-Tibet Railway Design[J]. Journal of Glaciology and Geocryology, 2004, 26 (S1): 151 – 154. (in Chinese))
    [5]
    李永强 . 路基新结构——热棒路基试验研究 [R]. 兰州 : 中铁西北科学研究院 , 2006. (LI Yong-qiang. New structure of subgrade —— experimental research of thermal probes subgrade[R]. Lanzhou: Northwest Research Institute Co., Ltd. of China Railway Engineering Corporation, 2006. (in Chinese))
    [6]
    潘卫东 , 赵肃菖 , 徐伟泽 , 等 . 热棒技术加强高原冻土区路基热稳定性的应用研究 [J]. 冰川冻土 , 2003, 25 (4): 433 – 438. (PAN Wei-dong, ZHAO Su-chang, XU Wei-ze, et al. Application of thermal probes to enhance thermal stability of roadbed in plateau permafrost areas[J]. Journal of Glaciology and Geocryology, 2003, 25 (4): 433 – 438. (in Chinese))
    [7]
    章金钊 , 姚翠琴 . 热桩在高原多年冻土地区的应用研究 [C]// 青藏公路整治工程科研设计文献汇编 . 交通部第一公路勘察设计院 , 1996, 4. (ZHANG Jin-zhao, YAO Cui-qin. Application Study of Thermal Pile in Plateau Permafrost Areas[C]// Literature Compilation of Research and Design about Control Engineering of Qinghai-Tibet Highway. The first Highway survey and design institute of Ministry of Communications, 1996. (in Chinese))
    [8]
    庄骏 , 张 红 . 热管技术及其工程应用 [M]. 北京 : 化学工业出版社 , 2000. (ZHUANG Jun, ZHANG Hong. Heat Pipe Technology and Engineering Application[M]. Beijing: Chemical Industry Press, 2000. (in Chinese))
    [9]
    汪双杰 , 黄晓明 , 陈建兵 , 等 . 无动力热棒冷却冻土路基研究 [J]. 公路交通科技 , 2005, 22 (3): . (WANG Shuang-jie, HUANG Xiao-ming, CHEN Jian-bing, et al, Research of cooling permafrost subgrade with thermal pipe of without motivity[J]. Journal of Highway and Transportation Research and Development, 2005, 22 (3): . (in Chinese))
    [10]
    SERGEI Guly. Heat Pump Application in Permafrost Engineering[J]. Journal of Glaciology and Geocryology, 2004, 26 (S1): 220 – 226.
    [11]
    张 红 , 陶汉中 , 郭宏新 . 热管技术在青藏铁路永冻土层路基中的应用研究 [J]. 冰川冻土 , 2004, 26 ( 增刊 1): 220 – 226. (ZHANG Hong, TAO Han-zhong, GUO Hong-xin. Application research of thermal pipe technology in subgrade works in the permafrost of Qinghai-Tibet Railway[J]. Journal of Glaciology and Geocryology, 2004, 26 ( 增刊 1): 220 – 226. (in Chinese))
    [12]
    丁靖康 . 冻土地区热桩技术的应用 [R]. 兰州 : 中铁西北科学研究院有限公司 , 1990. (DING Jiangkang. Research report of northwest research institute Co., Ltd. of China Railway Engineering Corporation, Application of thermal pile in permafrost regions[R]. 1990. (in Chinese))
    [13]
    吴青柏 , 梁素云 , 高兴旺 . 热桩与空气间的对流换热规律研究 [J]. 冰川冻土 , 1996, 18 (1): 37 – 41. (WU Qingbai, LIANG Suyun, GAO Xingwang, Research of convection exchange heat rule between thermal pile and air[J]. Journal of Glaciology and Geocryology, 1996, 18 (1): 37 – 41. (in Chinese))
    [14]
    李永强 . 热棒在冻土路基中的应用试验研究 [R]. 兰州 : 中铁西北科学研究院有限公司 , 2006. (LI Yong-qiang. Application and experimental research of thermal probes in permafrost subgrade[R]. Lanzhou: Northwest Research Institute Co., Ltd. of China Railway Engineering Corporation, 2006. (in Chinese))
    [15]
    徐兵魁 . 多年冻土区热棒路基设计计算 [D]. 北京 : 铁道科学研究院 , 2005. (XU Bing-kui, Design and calculation of thermal probes subgrade[D]. Beijing: China Academy Railway Sciences, 2005. (in Chinese))
    [16]
    库德里雅采夫 B A. 工程地质研究中的冻土预报原理 [M]. 兰州 : 兰州大学出版社 , 1992. (KUDEDEYACHEF B A. Principle of frozen soil forecast in engineering geology research[M]. Lanzhou: Lanzhou University, 1992. (in Chinese))
    [17]
    黄小铭 , 丁靖康 , 赫贵生 , 等 . 青藏铁路风火山多年冻土长期综合观测与工程试验研究 [R]. 兰州 : 中铁西北科学研究院有限公司 , 2006. (HUANG Xiao-ming, DING Jing-kang, He Gui-sheng, Long-tern comprehensive observation of permafrost in Fenghuoshan along Qinghai- Tibet Railway and engineering test research[R]. Lanzhou: Northwest Research Institute Co., Ltd. of China Railway Engineering Corporation, 2006. (in Chinese))
    [18]
    马原生 , 丁靖康 . 关于两相液气对流式无源冷冻系统设计的一些设想 [C]// 热桩的设计和应用 . 兰州 : 中铁西北科学研究院 , 1986: 1 – 15. (MA Yuansheng, DING Jingkang, Some Thinking on design of frozen system without sources by tow phase convert of liquid and air[C]// Design and Application of Thermal Pile. Lanzhou: Northwest Research Institute Co., Ltd. of China Railway Engineering Corporation, 1986: 1 – 15. (in Chinese))
    [19]
    JGJ118 — 98 冻土地区建筑地基基础设计规范 [S]. 1998. (JGJ118 — 98 Design standard of building foundation in frozen soil area[S]. 1998. (in Chinese))
    [20]
    杨永平 . 热管技术及其在青藏铁路多年冻土路基稳定性中的应用研究 [D]. 北京 : 北京交通大学 , 2004. (YANG Yong-ping. Thermal tube technique and its application in subgrade stability in permafrost area along Qinghai-Tibet Railway[D]. Beijing: Beijing Communication Press, 2004. (in Chinese))
  • Related Articles

    [1]GU Xiao-qiang, YU Kuan-yuan, HUANG Mao-song, LIU Xin, YAN Fang, WU De-shun. Finite element method for analyzing environmental vibration without apparent sources and its application in Beijing High-Energy Photon Source[J]. Chinese Journal of Geotechnical Engineering, 2022, 44(12): 2245-2252. DOI: 10.11779/CJGE202212011
    [2]WEI Ying-qi, CAI Hong, WU Shuai-feng, XIAO Jian-zhang, SONG Jian-zheng. Vibration response and reinforcement mechanism of high-fill soil-stone mixtures by dynamic compaction[J]. Chinese Journal of Geotechnical Engineering, 2019, 41(S1): 237-240. DOI: 10.11779/CJGE2019S1060
    [3]CAO Xue-shan, E Li-su, LAI Xi-yang, ZHOU Sai, LI Guo-wei, YUAN Jun-ping, WU Jian-tao. Factors for strength attenuation of mudstone during slaking and disintegration[J]. Chinese Journal of Geotechnical Engineering, 2019, 41(10): 1936-1942. DOI: 10.11779/CJGE201910019
    [4]DU Tao-tao. Propagation and response laws of mine seism[J]. Chinese Journal of Geotechnical Engineering, 2018, 40(3): 418-425. DOI: 10.11779/CJGE201803004
    [5]LI Shu-gang, ZHAO Yong, XU Man-gui. Change law of gas content under low-frequency vibration[J]. Chinese Journal of Geotechnical Engineering, 2015, 37(5): 918-923. DOI: 10.11779/CJGE201505018
    [6]LÜ Hai-bo, ZENG Zhao-tian, ZHAO Yan-lin, GE Ruo-dong, CHEN Cheng-you, WEI Chang-fu. Function fitting on strength attenuation curve of swell-shrinking soils[J]. Chinese Journal of Geotechnical Engineering, 2013, 35(zk2): 157-162.
    [7]YU Tian, LI Xiao-jun. Attenuation relationship of ground motion for Wenchuan Earthquake region based on NGA model[J]. Chinese Journal of Geotechnical Engineering, 2012, 34(3): 552-558.
    [8]HE Changming, ZOU Jinfeng, LI Liang. Field tests on measurement of dynamic stress of dynamic compaction[J]. Chinese Journal of Geotechnical Engineering, 2007, 29(4): 628-632.
    [9]Sun Jinzhong, Tan Hanhua, Qi Shengwen, Wang Shuli. Frequency analysis of dynamic compaction vibration[J]. Chinese Journal of Geotechnical Engineering, 2000, 22(4): 412-415.
    [10]Wang Mingyang, Qian Qihu. Attenuation Law of Explosive Wave Propagation in Cracks[J]. Chinese Journal of Geotechnical Engineering, 1995, 17(2): 42-46.

Catalog

    Article views (1425) PDF downloads (758) Cited by()
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return