• 全国中文核心期刊
  • 中国科技核心期刊
  • 美国工程索引(EI)收录期刊
  • Scopus数据库收录期刊
ZHONG Yang, ZHAO Xiaolei. Thermo-stress in multi-layered elastic half space solved with stiffness matrix method[J]. Chinese Journal of Geotechnical Engineering, 2005, 27(4): 374-377.
Citation: ZHONG Yang, ZHAO Xiaolei. Thermo-stress in multi-layered elastic half space solved with stiffness matrix method[J]. Chinese Journal of Geotechnical Engineering, 2005, 27(4): 374-377.

Thermo-stress in multi-layered elastic half space solved with stiffness matrix method

More Information
  • Published Date: April 14, 2005
  • In the paper, thermo-stress in multilayered elastic half space is presented. Firstly, the stiffness matrix for a layer is derived based on the fundamental elasticity equations and some mathematic methods such as Hankel integral transformation. Then the global stiffness matrix is established for multilayered elastic half space using the finite element concepts in which layers are completely contacted. Therefore, explicit solution for axisymmetrical problems in multilayered elastic half space is obtained from the solution of the algebraic equation formed by global stiffness matrix and the inverse Hankel integral transformation. Because positive exponential function is not included in the element of matrix, the calculation is not overflowed. Therefore, the shortages of transfer matrix method are overcome. This method is clear in concept, and the corresponding formulas given in the paper are not only simple but also convenient for application. More important is that this method can be used to solve other problems of multilayered elastic half space such as thermo field and dynamics. An example of road surface deflection is presented to prove the calculated results.
  • Related Articles

    [1]Model test on the cyclic bearing behavior of modified suction caisson in sand under misalignment lateral monotonic and cyclic loadings[J]. Chinese Journal of Geotechnical Engineering. DOI: 10.11779/CJGE20240810
    [2]MAO Long, ZHU Wenbo, YANG Jiayi, LI Yonghai, DENG Huiyuan, CHENG Danlian. Experimental study on bearing characteristics of reinforced suction caisson foundation with mobile jet technology[J]. Chinese Journal of Geotechnical Engineering, 2024, 46(S2): 226-230, 241. DOI: 10.11779/CJGE2024S20040
    [3]DAI Guo-liang, ZHU Wen-bo, GONG Wei-ming, ZHU Ming-xing, WAN Zhi-hui. Model tests on uplift bearing capacity of gravitational reinforced composite suction caisson foundation[J]. Chinese Journal of Geotechnical Engineering, 2020, 42(9): 1612-1621. DOI: 10.11779/CJGE202009005
    [4]LI Da-yong, WANG Dong-lin, ZHANG Yu-kun, GAO Yu-feng. Model tests on penetration and extration of modified suction caissons in clay[J]. Chinese Journal of Geotechnical Engineering, 2020, 42(3): 568-575. DOI: 10.11779/CJGE202003019
    [5]ZHANG Yong-tao, YANG Yan-hua, LI Bing, GONG Wei-ming. Model tests on bearing performance of suction caisson foundation for bridges[J]. Chinese Journal of Geotechnical Engineering, 2015, 37(1): 177-182. DOI: 10.11779/CJGE201501022
    [6]LI Da-yong, FENG Ling-yun, GUO Yan-xue, CAO Li-xue. Numerical analysis of lateral bearing behaviors of skirted suction caissons[J]. Chinese Journal of Geotechnical Engineering, 2013, 35(zk1): 33-38.
    [7]LI Da-yong, FENG Ling-yun, ZHANG Yu-kun, GUO Yan-xue. Model tests on lateral bearing capacity and deformation of skirted suction caissons in saturated fine sand under horizontal monotonic loading[J]. Chinese Journal of Geotechnical Engineering, 2013, 35(11): 2030-2037.
    [8]LI Bing, ZHENG Xiang, GAO Yu-feng, QIU Yue, SHA Cheng-ming. Model tests on pull-out capacity of suction caisson foundation in sand[J]. Chinese Journal of Geotechnical Engineering, 2013, 35(5): 902-907.
    [9]ZHANG Jianhong, LIN Xiaojing, LU Xiaobing. Physical modelling of suction foundations of TLPs under horizontal loads[J]. Chinese Journal of Geotechnical Engineering, 2007, 29(1): 77-81.
    [10]LU Xiaobing, WANG Yihua, ZHANG Jianhong, SUN Guoliang, SHI Zhongmin. Centrifuge test on the deformation of bucket foundation under horizontal vibration load[J]. Chinese Journal of Geotechnical Engineering, 2005, 27(7): 789-791.

Catalog

    Article views PDF downloads Cited by()
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return