• 全国中文核心期刊
  • 中国科技核心期刊
  • 美国工程索引(EI)收录期刊
  • Scopus数据库收录期刊
LIU Sihong, XIAO Gongyuan, YANG Jianzhou, WU Guangyin. New in-situ direct shear tests on rockfill materials at Yixing Pumped Storage Power Station Project[J]. Chinese Journal of Geotechnical Engineering, 2004, 26(6): 772-776.
Citation: LIU Sihong, XIAO Gongyuan, YANG Jianzhou, WU Guangyin. New in-situ direct shear tests on rockfill materials at Yixing Pumped Storage Power Station Project[J]. Chinese Journal of Geotechnical Engineering, 2004, 26(6): 772-776.

New in-situ direct shear tests on rockfill materials at Yixing Pumped Storage Power Station Project

More Information
  • Published Date: November 25, 2004
  • A new in-situ direct shear testing method for large-grained rockfill materials is introduced. The distinctive feature of this new in-situ direct shear testing method is to pull the shearing frame with a flexible chain, which causes the mutual movement of the shearing frame and the specimen during shear. Thus, the wall friction of the shearing frame has little influence upon the normal stress on the shear plane and the correct measurement for the shear strength becomes possible in the new direct shear test. There are many applications of this new testing method abroad, however, it is the first time in China to use this method in the upper reservoir of Yixing Pumped Storage Power Station Project.
  • Related Articles

    [1]WANG Zhi-jie, YANG Guang-qing, WANG He, LIU Wei-Chao. Mesoscopic numerical studies on geogrid-soil interface behavior under rigid and flexible top boundary conditions[J]. Chinese Journal of Geotechnical Engineering, 2019, 41(5): 967-973. DOI: 10.11779/CJGE201905021
    [2]WANG Jia-quan, LU Meng-liang, ZHOU Yue-fu, ZHANG Liang-liang. Bearing characteristics of reinforced soil with longitudinal and transverse ribs of geogrids[J]. Chinese Journal of Geotechnical Engineering, 2018, 40(1): 186-193. DOI: 10.11779/CJGE201801020
    [3]CHEN Chang-fu, LIANG Guan-ting, TANG Yu, XU You-lin. Anchoring solid-soil interface behavior using a novel laboratory testing technique[J]. Chinese Journal of Geotechnical Engineering, 2015, 37(6): 1115-1122. DOI: 10.11779/CJGE201506018
    [4]ZHENG Jun-jie, MIAO Chen-xi, XIE Ming-xing, ZHANG Jun. Interface properties and influence of particle size on geogrid reinforcement performance by DEM[J]. Chinese Journal of Geotechnical Engineering, 2013, 35(8): 1423-1428.
    [5]ZHU Hong-hu, ZHANG Cheng-cheng, PEI Hua-fu, ZHOU You, SHI Bin. Pullout mechanism of GFRP soil nails[J]. Chinese Journal of Geotechnical Engineering, 2012, 34(10): 1843-1849.
    [6]DUAN Jian, YAN Zhi-xin, GUO Rui-jian, LIU Zi-zhen, REN Zhi-hua. Failure analysis of soil anchors induced by loose interface under pullout load[J]. Chinese Journal of Geotechnical Engineering, 2012, 34(5): 936-941.
    [7]WANG Qi-yun, XIONG Zhi-biao, ZHANG Jia-sheng, CHEN Xiao-bin. Model tests on resistance behaviors of rock-concrete interface of rock-sockted piles in red-sandstone rock[J]. Chinese Journal of Geotechnical Engineering, 2011, 33(4): 661.
    [8]Experimental methods for interface behaviors of geosynthetics in landfills[J]. Chinese Journal of Geotechnical Engineering, 2010, 32(5).
    [9]ZHANG Mengxi, HUANG Chao. Ultimate pullout resistance model for rigid denti-strip reinforced soil[J]. Chinese Journal of Geotechnical Engineering, 2009, 31(9): 1336-1344.
    [10]YANG Guangqing, LI Guangxin, ZHANG Baojian. Experimental studies on interface friction characteristics of geogrids[J]. Chinese Journal of Geotechnical Engineering, 2006, 28(8): 948-952.

Catalog

    Article views (1185) PDF downloads (329) Cited by()
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return