• 全国中文核心期刊
  • 中国科技核心期刊
  • 美国工程索引(EI)收录期刊
  • Scopus数据库收录期刊
REN Jiali, CHENG Yonghui, LI bo, HU Shenggang, ZHANG Huawei. Centrifugal model tests on vertical bearing characteristics of undercompacted slope piles[J]. Chinese Journal of Geotechnical Engineering, 2024, 46(S1): 69-74. DOI: 10.11779/CJGE2024S10044
Citation: REN Jiali, CHENG Yonghui, LI bo, HU Shenggang, ZHANG Huawei. Centrifugal model tests on vertical bearing characteristics of undercompacted slope piles[J]. Chinese Journal of Geotechnical Engineering, 2024, 46(S1): 69-74. DOI: 10.11779/CJGE2024S10044

Centrifugal model tests on vertical bearing characteristics of undercompacted slope piles

More Information
  • Received Date: April 28, 2024
  • The existing theories and experience of pile foundation are based on the flat slopes, and the stress characteristics of undercompacted slope piles are quite different from those of flat slope piles. Based on the stress characteristics of slope piles, three groups of centrifugal model tests are carried out to study the bearing characteristics of foundation piles under vertical loads. The distribution characteristics of side friction resistance, axial force, vertical displacement of piles and the settlement laws of soils around the piles are obtained. The influences of compaction degree and slope ratio on the uncoordinated deformations of the piles and soils are analyzed. The results are as follows: (1) The stress of the undercompacted slope piles includes the positive friction resistance at the pile side, the negative friction resistance at the pile side, the resistance at the pile end and the sliding force of the slope. (2) The compaction degree of soils has a great influence on the distribution of pile side friction along the depth and pile tip resistance. The slope gradient has a great influence on the distribution of pile side friction resistance and the peak value of side resistance. (3) The neutral point of the negative friction resistance of the slope pile is about 0.5 ~ 0.6 times the length of the pile along the burial depth. According to the conventional design, the additional negative friction resistance and lateral load of the piles are easy to cause pile damage.
  • [1]
    龚晓南. 桩基工程手册[M]. 2版. 北京: 中国建筑工业出版社, 2016.

    GONG Xiaonan. Handbook of Pile Foundation Engineering[M]. 2nd ed. Beijing: China Architecture & Building Press, 2016. (in Chinese)
    [2]
    程刘勇, 陈善雄, 余飞, 等. 竖向荷载下斜坡桩基承载力及影响因素数值研究[J]. 科学技术与工程, 2013, 13(18): 5399-5403, 5422. doi: 10.3969/j.issn.1671-1815.2013.18.060

    CHENG Liuyong, CHEN Shanxiong, YU Fei, et al. Numerical simulation for vertical ultimate capacity and influencing factors of oblique slope pile under vertical loads[J]. Science Technology and Engineering, 2013, 13(18): 5399-5403, 5422. (in Chinese) doi: 10.3969/j.issn.1671-1815.2013.18.060
    [3]
    胡明源, 张建伟, 王宏权, 等. 复杂荷载下斜坡上单桩水平承载特性研究[J]. 河南大学学报(自然科学版), 2017, 47(5): 584-590.

    HU Mingyuan, ZHANG Jianwei, WANG Hongquan, et al. Study on the bearing characteristics of pile on slope under complex loads[J]. Journal of Henan University (Natural Science), 2017, 47(5): 584-590. (in Chinese)
    [4]
    JIANG C, LI T B, ZHOU K P, et al. Reliability analysis of piles constructed on slopes under laterally loading[J]. Transactions of Nonferrous Metals Society of China, 2016, 26(7): 1955-1964. doi: 10.1016/S1003-6326(16)64306-6
    [5]
    彭文哲, 赵明华, 杨超炜, 等. 斜坡地基桩前土抗力的应变楔模型修正[J]. 中南大学学报(自然科学版)2020, 51(7): 1936-1945.

    PENG Wenzhe, ZHAO Minghua, YANG Chaowei, et al. Modification of strain wedge model for soil resistance in front of piles in sloping ground[J]. Journal of Central South University(Science and Technology), 2020, 51(7): 1936-1945. (in Chinese)
    [6]
    尹平保, 赵明华, 赵衡, 等. 考虑斜坡效应的桩柱式桥梁基桩稳定性分析[J]. 湖南大学学报(自然科学版), 2016, 43(11): 20-25. doi: 10.3969/j.issn.1674-2974.2016.11.004

    YIN Pingbao, ZHAO Minghua, ZHAO Heng, et al. Stability analysis of pile-column bridge pile considering slope effect[J]. Journal of Hunan University (Natural Sciences), 2016, 43(11): 20-25. (in Chinese) doi: 10.3969/j.issn.1674-2974.2016.11.004
    [7]
    文松霖, 胡胜刚, 胡汉兵, 等. 渠坡上基桩的水平承载机制试验研究[J]. 岩土力学, 2010, 31(6): 1786-1790. doi: 10.3969/j.issn.1000-7598.2010.06.018

    WEN Songlin, HU Shenggang, HU Hanbing, et al. Test sduty of horizontal bearing mechanism of pile on canal slope[J]. Rock and Soil Mechanics, 2010, 31(6): 1786-1790. (in Chinese) doi: 10.3969/j.issn.1000-7598.2010.06.018

Catalog

    Article views (75) PDF downloads (14) Cited by()
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return