| Citation: | YAO Yangping, SUN Haozheng. State parameters applicable to unified model for clays and sands[J]. Chinese Journal of Geotechnical Engineering, 2025, 47(7): 1344-1353. DOI: 10.11779/CJGE20240274 |
The state parameter is the key of the unified constitutive model for clays and sands. Based on the state parameters, the MIT-S1 and CSUH unified constitutive models for clays and sands are compared and analyzed. Through comparison, the state parameter of the MIT-S1 model cannot be reasonably applied to the hardening parameters. It is difficult to accurately characterize the dilatancy of sand by using the LCC as the reference line to define the state parameter δp. Additionally, the state parameters are not unified. The CSUH model extends NCL of clays into that of sands, and the defined state parameter ξ can dynamically and unified represent different compactness states of clays and sands, accurately describe the basic properties of soils and act reasonably on the hardening parameter by Mc and MY. Therefore, the model is more concise and advantageous in describing the stress-strain relationship. By comparing the test data of clays and sands and the predicted results of the two unified models, it is further verified the accuracy of the CSUH model in describing the stress-strain relationship of clays and sands.
| [1] |
WROTH C, HOULSBY G. Soil mechanics-property characterization and analysis procedures[C]// Proceedings of the Eleventh International Conference on Soil Mechanics and Foundation Engineering. San Francisco, 1985.
|
| [2] |
PESTANA J M, WHITTLE A J. Formulation of a unified constitutive model for clays and sands[J]. International Journal for Numerical and Analytical Methods in Geomechanics, 1999, 23(12): 1215-1243. doi: 10.1002/(SICI)1096-9853(199910)23:12<1215::AID-NAG29>3.0.CO;2-F
|
| [3] |
YAO Y P, LIU L, LUO T, et al. Unified hardening (UH) model for clays and sands[J]. Computers and Geotechnics, 2019, 110: 326-343. doi: 10.1016/j.compgeo.2019.02.024
|
| [4] |
PESTANA J M, WHITTLE A J. Compression model for cohesionless soils[J]. Géotechnique, 1995, 45(4): 611-631. doi: 10.1680/geot.1995.45.4.611
|
| [5] |
YAO Y P, HE G, LIU L, et al. A basic constitutive model for sands[J]. Acta Geotechnica, 2022, 17(5): 2021-2027. doi: 10.1007/s11440-021-01267-w
|
| [6] |
姚仰平. 土的统一硬化本构理论及其工程应用[J/OL]. 中国科学: 技术科学, 2023: 1-17. (2023-11-28). https://kns.cnki.net/KCMS/detail/detail.aspx?filename=JEXK20231124002&dbname=CJFD&dbcode=CJFQ.
YAO Yangping. Unified hardening constitutive theory of soil and its engineering application[J/OL]. China Industrial Economics, 2023: 1-17. (2023-11-28). https://kns.cnki.net/KCMS/detail/detail.aspx?filename=JEXK20231124002&dbname=CJFD&dbcode=CJFQ. (in Chinese)
|
| [7] |
MANZARI M T, DAFALIAS Y F. A critical state two-surface plasticity model for sands[J]. Géotechnique, 1997, 47(2): 255-272. doi: 10.1680/geot.1997.47.2.255
|
| [8] |
LI X S, DAFALIAS Y F. Dilatancy for cohesionless soils[J]. Géotechnique, 2000, 50(4): 449-460. doi: 10.1680/geot.2000.50.4.449
|
| [9] |
蔡正银, 李相菘. 砂土的剪胀理论及其本构模型的发展[J]. 岩土工程学报, 2007, 29(8): 1122-1128. https://cge.nhri.cn/article/id/12569
CAI Zhengyin, LI Xiangsong. Development of dilatancy theory and constitutive model of sand[J]. Chinese Journal of Geotechnical Engineering, 2007, 29(8): 1122-1128. (in Chinese) https://cge.nhri.cn/article/id/12569
|
| [10] |
YAO Y P, HOU W, ZHOU A N. UH model: three-dimensional unified hardening model for overconsolidated clays[J]. Géotechnique, 2009, 59(5): 451-469. doi: 10.1680/geot.2007.00029
|
| [11] |
HASHIGUCHI K. Subloading surface model in unconventional plasticity[J]. International Journal of Solids and Structures, 1989, 25(8): 917-945. doi: 10.1016/0020-7683(89)90038-3
|
| [12] |
WHITTLE A J, KAVVADAS M J. Formulation of MIT-E3 constitutive model for overconsolidated clays[J]. Journal of Geotechnical Engineering, 1994, 120(1): 173-198. doi: 10.1061/(ASCE)0733-9410(1994)120:1(173)
|
| [13] |
姚仰平, 陈凯. 砂土的密度相关状态参量的划分及分析[J]. 土木工程学报, 2023, 56(09): 116-124.
YAO Yang-ping, CHEN Kai. Classification and analysis of density-dependent state parameters for sand[J]. China Civil Engineering Journal, 2023, 56(9): 116-124. (in Chinese)
|
| [14] |
PESTANA J M, WHITTLE A J, SALVATI L A. Evaluation of a constitutive model for clays and sands: Part Ⅰ–sand behaviour[J]. International Journal for Numerical and Analytical Methods in Geomechanics, 2002, 26(11): 1097-1121. doi: 10.1002/nag.237
|
| [15] |
ZHU B L, CHEN Z Y. Calibrating and validating a soil constitutive model through conventional triaxial tests: an in-depth study on CSUH model[J]. Acta Geotechnica, 2022, 17(8): 3407-3420. doi: 10.1007/s11440-021-01432-1
|
| [16] |
ISHIHARA K. Liquefaction and flow failure during earthquakes[J]. Géotechnique, 1993, 43(3): 351-451. doi: 10.1680/geot.1993.43.3.351
|
| [17] |
PESTANA J M, WHITTLE A J, GENS A. Evaluation of a constitutive model for clays and sands: Part Ⅱ–clay behaviour[J]. International Journal for Numerical and Analytical Methods in Geomechanics, 2002, 26(11): 1123-1146. doi: 10.1002/nag.238
|
| [1] | JIANG Wenhao, LI Jiangshan, FENG Chen. Coupled model for one-dimensional nonlinear consolidation and contaminant transport in a compacted clay liner considering mechanical-chemical loading[J]. Chinese Journal of Geotechnical Engineering, 2023, 45(11): 2289-2298. DOI: 10.11779/CJGE20220980 |
| [2] | LI Jiang-shan, JIANG Wen-hao, GE Shang-qi, HUANG Xiao, CHENG Xin, WAN Yong. Coupling model for consolidation and contaminant transport in compactedclay liners under non-isothermal condition[J]. Chinese Journal of Geotechnical Engineering, 2022, 44(11): 2071-2080. DOI: 10.11779/CJGE202211013 |
| [3] | XU Meng-fei, JIANG An-nan, DUAN Long-mei, JIAO Ming-wei, HU Xue-feng. Centrifugal loading finite element method for slope stability under damage-seepage coupling effect[J]. Chinese Journal of Geotechnical Engineering, 2019, 41(11): 2103-2111. DOI: 10.11779/CJGE201911016 |
| [4] | YANG Guang-chang, BAI Bing. A thermo-hydro-mechanical coupled model for unsaturated soils based on thermodynamic theory of granular matter[J]. Chinese Journal of Geotechnical Engineering, 2019, 41(9): 1688-1697. DOI: 10.11779/CJGE201909013 |
| [5] | HUANG Wei, LIU Qing-bing, XIANG Wei, LANG Lin-zhi, CUI De-shan, WANG Jing-e. Hydration mechanism and microscopic water retention model of clay at high suction range[J]. Chinese Journal of Geotechnical Engineering, 2018, 40(7): 1268-1276. DOI: 10.11779/CJGE201807013 |
| [6] | HE Min, FENG Xiao-peng, LI Ning, LIU Nai-fei. Improvement of coupled thermo-hydro-mechanical model for saturated freezing soil[J]. Chinese Journal of Geotechnical Engineering, 2018, 40(7): 1212-1220. DOI: 10.11779/CJGE201807007 |
| [7] | CAI Guo-qing, WANG Ya-nan, ZHOU An-nan, ZHAO Cheng-gang. A microstructure-dependent hydro-mechanical coupled constitutive model for unsaturated soils[J]. Chinese Journal of Geotechnical Engineering, 2018, 40(4): 618-624. DOI: 10.11779/CJGE201804005 |
| [8] | LI Jian, ZHAO Cheng-gang. Constitutive model for unsaturated expansive soils under suction cycles[J]. Chinese Journal of Geotechnical Engineering, 2014, 36(1): 132-139. DOI: 10.11779/CJGE201401012 |
| [9] | QIN Bing, CHEN Zheng-han, SUN Fa-xin, FANG Xiang-wei, LIU Yue-miao, WANG Ju. Temperature effect on water retention curve under high suction and its modeling based on thermodynamics of sorption[J]. Chinese Journal of Geotechnical Engineering, 2012, 34(10): 1877-1886. |
| [10] | LUO Zujiang, LI Lang, YAO Tianqiang, LUO Jianjun. Coupling model of three dimensional seepage and land-subsidence for dewatering of deep foundation pit in loose confined aquifers[J]. Chinese Journal of Geotechnical Engineering, 2006, 28(11): 1947-1951. |