• 全国中文核心期刊
  • 中国科技核心期刊
  • 美国工程索引(EI)收录期刊
  • Scopus数据库收录期刊
ZENG Ling, GUO Yu, GAO Qianfeng, LUO Jintao, ZHA Huanyi, BIAN Hanbing. Dynamic fracture propagation and mechanism of silty mudstone under hydrothermal alternation[J]. Chinese Journal of Geotechnical Engineering, 2025, 47(4): 820-828. DOI: 10.11779/CJGE20240061
Citation: ZENG Ling, GUO Yu, GAO Qianfeng, LUO Jintao, ZHA Huanyi, BIAN Hanbing. Dynamic fracture propagation and mechanism of silty mudstone under hydrothermal alternation[J]. Chinese Journal of Geotechnical Engineering, 2025, 47(4): 820-828. DOI: 10.11779/CJGE20240061

Dynamic fracture propagation and mechanism of silty mudstone under hydrothermal alternation

More Information
  • Received Date: January 16, 2024
  • Available Online: September 26, 2024
  • Fracture extension is the cause of collapse failure of silty mudstone slopes. For the fracture extension of silty mudstone, the hydrothermal alternation and Brazilian splitting tests are conducted to analyze the pattern of fracture development. The influences of hydrothermal alternation and fractures on tensile strength are explored, and the fracturing mechanism is studied in combination with the dissipative structure theory. The results reveal that the fracture development in silty mudstone follows a spiral dynamic growth pattern, with a greater degree of development observed during heating than during wetting. The difference coefficient of fracture development gradually decreases from 2.18 to 1.43. The hygrothermal alternation and decreasing fracture inclination degrade the tensile strength of silty mudstone. The energy absorption of the splitting process is weakened with an increasing number of alternations, resulting in a decreasing proportion of elastic energy and an increasing proportion of dissipated energy. The fracture propagation of silty mudstone is a process of gradual formation of dissipative structure. The internal structure is adjusted due to the change of energy and material exchange mode, and the system mutation leads to the formation of fractures. The findings from this study can provide theoretical references for ensuring the safe protection of mudstone slopes.
  • [1]
    付宏渊, 陈镜丞, 曾铃, 等. 温、湿度对粉砂质泥岩单轴力学性能的影响试验[J]. 土木工程学报, 2019, 52(1): 89-98.

    FU Hongyuan, CHEN Jingcheng, ZENG Ling, et al. Experiment on the effects of temperature and humidity on uniaxial mechanical properties of silty mudstone[J]. China Civil Engineering Journal, 2019, 52(1): 89-98. (in Chinese)
    [2]
    朱江鸿, 余荣光, 韩淑娴, 等. 干湿循环下不同初始干密度泥岩强度劣化研究[J]. 铁道学报, 2021, 43(10): 109-117. doi: 10.3969/j.issn.1001-8360.2021.10.014

    ZHU Jianghong, YU Rongguang, HAN Shuxian, et al. Strength deterioration of mudstone with different initial dry densities under dry-wet cycles[J]. Journal of the China Railway Society, 2021, 43(10): 109-117. (in Chinese) doi: 10.3969/j.issn.1001-8360.2021.10.014
    [3]
    曹雪山, 额力素, 赖喜阳, 等. 崩解泥化过程中泥岩强度衰减因素研究[J]. 岩土工程学报, 2019, 41(10): 1936-1942. doi: 10.11779/CJGE201910019

    CAO Xueshan, E Lisu, LAI Xiyang, et al. Factors for strength attenuation of mudstone during slaking and disintegration[J]. Chinese Journal of Geotechnical Engineering, 2019, 41(10): 1936-1942. (in Chinese) doi: 10.11779/CJGE201910019
    [4]
    HE L P, YU J Y, HU Q J, et al. Study on crack propagation and shear behavior of weak muddy intercalations submitted to wetting-drying cycles[J]. Bulletin of Engineering Geology and the Environment, 2020, 79(9): 4873-4889. doi: 10.1007/s10064-020-01842-7
    [5]
    曾铃, 罗锦涛, 侯鹏, 等. 干湿循环作用下预崩解炭质泥岩裂隙发育规律及强度特性[J]. 中国公路学报, 2020, 33(9): 1-11. doi: 10.3969/j.issn.1001-7372.2020.09.001

    ZENG Ling, LUO Jintao, HOU Peng, et al. Crack development and strength characteristics of pre-disintegrated carbonaceous mudstone under dry-wet cycles[J]. China Journal of Highway and Transport, 2020, 33(9): 1-11. (in Chinese) doi: 10.3969/j.issn.1001-7372.2020.09.001
    [6]
    夏万春, 王林峰, 张继旭, 等. 酸环境干湿循环作用下泥灰岩损伤劣化分析[J]. 工程地质学报, 2022, 30(6): 2006-2015.

    XIA Wanchun, WANG Linfeng, ZHANG Jixu, et al. Damage and deterioration analysis of marl under dry wet cycle in acid environment[J]. Journal of Engineering Geology, 2022, 30(6): 2006-2015. (in Chinese)
    [7]
    HU M, LIU Y X, REN J B, et al. Temperature-induced deterioration mechanisms in mudstone during dry–wet cycles[J]. Geotechnical and Geological Engineering, 2017, 35(6): 2965-2976.
    [8]
    ZHANG D, CHEN A Q, LIU G C. Laboratory investigation of disintegration characteristics of purple mudstone under different hydrothermal conditions[J]. Journal of Mountain Science, 2012, 9(1): 127-136. doi: 10.1007/s11629-012-2204-1
    [9]
    赵秀绍, 赵林浩, 陈子溪, 等. 全风化千枚岩、红黏土及其改良土裂隙演化规律[J]. 中国公路学报, 2021, 34(12): 323-334. doi: 10.3969/j.issn.1001-7372.2021.12.025

    ZHAO Xiushao, ZHAO Linhao, CHEN Zixi, et al. Fissure evolution laws of completely weathered phyllite, red clay and its improved soil[J]. China Journal of Highway and Transport, 2021, 34(12): 323-334. (in Chinese) doi: 10.3969/j.issn.1001-7372.2021.12.025
    [10]
    DAI Z J, GUO J H, YU F, et al. Long-term uplift of high-speed railway subgrade caused by swelling effect of red-bed mudstone: case study in Southwest China[J]. Bulletin of Engineering Geology and the Environment, 2021, 80(6): 4855-4869. doi: 10.1007/s10064-021-02220-7
    [11]
    张亮, 王桂林, 雷瑞德, 等. 单轴压缩下不同长度单裂隙岩体能量损伤演化机制[J]. 中国公路学报, 2021, 34(1): 24-34.

    ZHANG Liang, WANG Guilin, LEI Ruide, et al. Energy damage evolution mechanism of single jointed rock mass with different lengths under uniaxial compression[J]. China Journal of Highway and Transport, 2021, 34(1): 24-34. (in Chinese)
    [12]
    陈祥, 肖桃李, 折海成. 三轴压缩条件下单裂隙岩样裂隙扩展研究[J]. 科学技术与工程, 2022, 22(26): 11567-11576.

    CHEN Xiang, XIAO Taoli, ZHE Haicheng. Triaxial compression condition order fracture rock fissure extension study[J]. Science Technology and Engineering, 2022, 22(26): 11567-11576. (in Chinese)
    [13]
    刘新喜, 李玉, 范子坚, 等. 干湿循环作用下单裂隙炭质页岩能量演化与破坏特征研究[J]. 岩土力学, 2022, 43(7): 1761-1771.

    LIU Xinxi, LI Yu, FAN Zijian, et al. Energy evolution and failure characteristics of single fissure carbonaceous shale under drying-wetting cycles[J]. Rock and Soil Mechanics, 2022, 43(7): 1761-1771. (in Chinese)
    [14]
    杨成祥, 宋磊博, 王刚, 等. CT实时观察下泥岩遇水软化过程的机理[J]. 东北大学学报(自然科学版), 2015, 36(10): 1461-1465.

    YANG Chengxiang, SONG Leibo, WANG Gang, et al. Mechanism of water-weakening process of mudrock observed using real-time CT[J]. Journal of Northeastern University (Natural Science), 2015, 36(10): 1461-1465. (in Chinese)
    [15]
    XIAO P, LI D Y, ZHAO G Y, et al. Mechanical properties and failure behavior of rock with different flaw inclinations under coupled static and dynamic loads[J]. Journal of Central South University, 2020, 27(10): 2945-2958. doi: 10.1007/s11771-020-4520-x
    [16]
    ZENG L, LI F, GAO Q F, et al. Insight into the fracturing of silty mudstone in cyclic hydrothermal environments based on computed tomography[J]. Transportation Geotechnics, 2021, 26: 100432. doi: 10.1016/j.trgeo.2020.100432
    [17]
    陈剑平. 岩土体变形的耗散结构认识[J]. 长春科技大学学报, 2001, 31(3): 288-293. doi: 10.3969/j.issn.1671-5888.2001.03.018

    CHEN Jianping. Towards understanding of dissipative structure deformation process of rock and soil mass[J]. Journal of Jilin University (Earth Science Edition), 2001, 31(3): 288-293. (in Chinese) doi: 10.3969/j.issn.1671-5888.2001.03.018
    [18]
    朱凤贤, 周翠英. 软岩遇水软化的耗散结构形成机制[J]. 地球科学, 2009, 34(3): 525-532.

    ZHU Fengxian, ZHOU Cuiying. Forming mechanism of dissipative structure in the softening process of saturated soft rocks[J]. Earth Science, 2009, 34(3): 525-532. (in Chinese)
    [19]
    周翠英, 苏定立, 刘镇. 软岩渗流-化学-损伤软化过程中能量耗散机制[J]. 工程地质学报, 2019, 27(3): 477-486.

    ZHOU Cuiying, SU Dingli, LIU Zhen. Discussion on energy dissipation mechanism in seepage-chemical damage-softening process of soft rock[J]. Journal of Engineering Geology, 2019, 27(3): 477-486. (in Chinese)
    [20]
    ZHAO Y X, LIU B. Deformation field and acoustic emission characteristics of weakly cemented rock under Brazilian splitting test[J]. Natural Resources Research, 2021, 30(2): 1925-1939.
    [21]
    LI J H, ZHANG L M. Geometric parameters and REV of a crack network in soil[J]. Computers and Geotechnics, 2010, 37(4): 466-475.
    [22]
    蔡正银, 朱洵, 黄英豪, 等. 湿干冻融耦合循环作用下膨胀土裂隙演化规律[J]. 岩土工程学报, 2019, 41(8): 1381-1389.

    CAI Zhengyin, ZHU Xun, HUANG Yinghao, et al. Evolution rules of fissures in expansive soils under cyclic action of coupling wetting-drying and freeze-thaw[J]. Chinese Journal of Geotechnical Engineering, 2019, 41(8): 1381-1389. (in Chinese)
    [23]
    曾长女, 金南南, 谷贺, 等. 基于数字图像测量技术的豆粕剪切变形特性[J]. 农业工程学报, 2020, 36(5): 310-317.

    ZENG Changnv, JIN Nannan, GU He, et al. Analysis of triaxial shear characteristics of soybean meal based on digital image measurement technology[J]. Transactions of the Chinese Society of Agricultural Engineering, 2020, 36(5): 310-317. (in Chinese)
    [24]
    胡星宇, 高乾丰, 曾铃, 等. 湿热循环作用下中风化花岗岩强度损伤特性研究[J]. 地下空间与工程学报, 2023, 19(6): 1800-1808.

    HU Xingyu, GAO Qianfeng, ZENG Ling, et al. Study of strength damage characteristics of moderately weathered granite under wetting-heating cycles[J]. Chinese Journal of Underground Space and Engineering, 2023, 19(6): 1800-1808. (in Chinese)
    [25]
    侯鹏, 高峰, 杨玉贵, 等. 考虑层理影响页岩巴西劈裂及声发射试验研究[J]. 岩土力学, 2016, 37(6): 1603-1612.

    HOU Peng, GAO Feng, YANG Yugui, et al. Effect of bedding plane direction on acoustic emission characteristics of shale in Brazilian tests[J]. Rock and Soil Mechanics, 2016, 37(6): 1603-1612. (in Chinese)

Catalog

    Article views (105) PDF downloads (14) Cited by()
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return