• 全国中文核心期刊
  • 中国科技核心期刊
  • 美国工程索引(EI)收录期刊
  • Scopus数据库收录期刊
LI Sihan, CAI Xiaoguang, JING Liping, CAI Boyuan, HUANG Xin, XU Honglu. Health status identification of modular-block-reinforced soil retaining walls after earthquakes[J]. Chinese Journal of Geotechnical Engineering, 2023, 45(S2): 116-121. DOI: 10.11779/CJGE2023S20013
Citation: LI Sihan, CAI Xiaoguang, JING Liping, CAI Boyuan, HUANG Xin, XU Honglu. Health status identification of modular-block-reinforced soil retaining walls after earthquakes[J]. Chinese Journal of Geotechnical Engineering, 2023, 45(S2): 116-121. DOI: 10.11779/CJGE2023S20013

Health status identification of modular-block-reinforced soil retaining walls after earthquakes

More Information
  • Received Date: November 29, 2023
  • Available Online: April 19, 2024
  • Distribution of dynamic characteristics (natural frequency and damping ratio) of large-scale shaking table model tests on a reinforced soil retaining wall (RSRW) under different working conditions is analyzed by using the time-domain identification method. The variation characteristics of dynamic characteristics at different positions of the RSRW are introduced, and the distribution laws of its dynamic characteristics under different damage degrees are expounded. The quantitative relationship between the amplitude of dynamic characteristics and the damage degree of the RSRW is explored. The results show that at the early stage of loading stage, the natural frequencies are basically the same, and the damping ratio decreases with the increase of wall height. At the later stage of loading, the natural frequency of the RSRW decreases obviously, and the damping ratio increases greatly. The distribution curves of the natural frequency and damping ratio are obtained by the mathematical methods. The variation amplitudes of the natural frequency and damping ratio are obtained for the following four stages: basic intact, slight damage, moderate damage and destruction. When the decrease amplitude of the natural frequency is 6.75 % ~ 16.43 % and the increase amplitude of the damping ratio is 106.14 % ~ 243.09 %, it can be considered that the RSRW is at the middle failure stage. When the decreasing amplitude of the natural vibration frequency is 16.43 % ~ 31.59 % and the increasing amplitude of the damping ratio is 243.09 % ~ 462.04%, it can be considered that the RSRW is at the destruction stage.
  • [1]
    HAN J, JIANG Y, XU C. Recent advances in geosynthetic-reinforced retaining walls for highway applications[J]. Frontiers of Structural and Civil Engineering, 2018, 12(2): 239-247. doi: 10.1007/s11709-017-0424-8
    [2]
    ZHU Y M, ZHANG F, JIA S L. Embodied energy and carbon emissions analysis of geosynthetic reinforced soil structures[J]. Journal of Cleaner Production, 2022, 370: 133510. doi: 10.1016/j.jclepro.2022.133510
    [3]
    KUWANO J, MIYATA Y, KOSEKI J. Performance of reinforced soil walls during the 2011 Tohoku earthquake[J]. Geosynthetics International, 2014, 21(3): 179-196. doi: 10.1680/gein.14.00008
    [4]
    KOERNER R M, KOERNER G R. An extended data base and recommendations regarding 320 failed geosynthetic reinforced mechanically stabilized earth (MSE) walls[J]. Geotextiles and Geomembranes, 2018, 46(6): 904-912. doi: 10.1016/j.geotexmem.2018.07.013
    [5]
    LI S H, CAI X G, JING L P, et al. Lateral displacement control of modular-block reinforced soil retaining walls under horizontal seismic loading[J]. Soil Dynamics and Earthquake Engineering, 2021, 141: 106485. doi: 10.1016/j.soildyn.2020.106485
    [6]
    LING H I, LESHCHINSKY D, CHOU N N S. Post-earthquake investigation on several geosynthetic-reinforced soil retaining walls and slopes during the Ji-Ji earthquake of [J]. Soil Dynamics and Earthquake Engineering, 2001, 21(4): 297-313. doi: 10.1016/S0267-7261(01)00011-2
    [7]
    CAWLEY P. Structural health monitoring: closing the gap between research and industrial deployment[J]. Structural Health Monitoring, 2018, 17(5): 1225-1244. doi: 10.1177/1475921717750047
    [8]
    朱宏伟, 姚令侃, 张旭海. 两种加筋土挡墙的动力特性比较及抗震设计建议[J]. 岩土工程学报, 2012, 34(11): 2072-2080. http://cge.nhri.cn/cn/article/id/14907

    ZHU Hongwei, YAO Lingkan, ZHANG Xuhai. Comparison of dynamic characteristics between netted and packaged reinforced soil retaining walls and recommendations for seismic design[J]. Chinese Journal of Geotechnical Engineering, 2012, 34(11): 2072-2080. (in Chinese) http://cge.nhri.cn/cn/article/id/14907
    [9]
    HUANG C C. Seismic responses of vertical-faced wrap-around reinforced soil walls[J]. Geosynthetics International, 2019, 26(2): 146-163. doi: 10.1680/jgein.18.00044
    [10]
    徐鹏, 蒋关鲁, 胡耀芳, 等. 整体刚性面板加筋土挡墙基频影响因素计算分析[J]. 岩土力学, 2018, 39(12): 4475-4481. https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201812022.htm

    XU Peng, JIANG Guanlu, HU Yaofang, et al. Calculation of fundamental frequencies of reinforced retaining walls with full-height rigid facing[J]. Rock and Soil Mechanics, 2018, 39(12): 4475-4481. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201812022.htm
    [11]
    ABBASI O, GHANBARI A, HOSSEINI S A A. An analytical method for calculating the natural frequency of reinforced retaining walls with soil–structure interaction effect[J]. Geosynthetics International, 2014, 21(1): 53-61. doi: 10.1680/gein.13.00034
    [12]
    SARBISHEI S, FAKHER A. Energy-based horizontal slice method for pseudo-static analysis of reinforced walls[J]. Geosynthetics International, 2012, 19(5): 370-384. doi: 10.1680/gein.12.00023
    [13]
    RAMEZANI M S, GHANBARI A, HOSSEINI S A A. Analytical method for calculating natural frequencies of geosynthetic-reinforced wall with full-height concrete facing[J]. Geosynthetics International, 2017, 24(1): 1-13. doi: 10.1680/jgein.16.00011
    [14]
    伍永胜. 加筋土挡墙动力特性及抗震设计方法研究[D]. 长沙: 湖南大学, 2006.

    WU Yongsheng. Study on Dynamic Characteristics and Seismic Design Method of Reinforced Earth Retaining Wall[D]. Changsha: Hunan University, 2006. (in Chinese)
    [15]
    HATAMI K, BATHURST R J. Effect of structural design on fundamental frequency of reinforced-soil retaining walls[J]. Soil Dynamics and Earthquake Engineering, 2000, 19(3): 137-157. doi: 10.1016/S0267-7261(00)00010-5
    [16]
    李思汉. 模块式加筋土挡墙动力反应试验研究及数值分析[D]. 廊坊: 防灾科技学院, 2018.

    LI Sihan. Experimental Study and Numerical Analysis of Dynamic Response of Modular Reinforced Earth Retaining Wall[D]. Langfang: Institute of Disaster Prevention, 2018. (in Chinese)
    [17]
    LI S H, CAI X G, JING L P, et al. Reinforcement strain and potential failure surface of geogrid reinforced soil-retaining wall under horizontal seismic loading[J]. Shock and Vibration, 2020, 2020: 8864256.
    [18]
    CAI X G, LI S H, XU H L, et al. Shaking table study on the seismic performance of geogrid reinforced soil retaining walls[J]. Advances in Civil Engineering, 2021, 2021: 6668713.
    [19]
    李思汉, 蔡晓光, 景立平, 等. 基于位移的模块式加筋土挡墙抗震设计方法研究[J]. 地震工程学报, 2023, 45(5): 1066-1074. https://www.cnki.com.cn/Article/CJFDTOTAL-ZBDZ202305008.htm

    LI Sihan, CAI Xiaoguang, JING Liping, et al. Displacement-based seismic design methods of a modular reinforced soil retaining wall[J]. China Earthquake Engineering Journal, 2023, 45(5): 1066-1074. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-ZBDZ202305008.htm
    [20]
    魏明, 罗强, 蒋良潍, 等. 悬臂式加筋土复合支挡结构振动台模型试验研究[J]. 岩石力学与工程学报, 2021, 40(3): 607-618. https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX202103014.htm

    WEI Ming, LUO Qiang, JIANG Liangwei, et al. Shaking table tests of cantilevered reinforced soil retaining walls[J]. Chinese Journal of Rock Mechanics and Engineering, 2021, 40(3): 607-618. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX202103014.htm
    [21]
    YAZDANDOUST M. Investigation on the seismic performance of steel-strip reinforced-soil retaining walls using shaking table test[J]. Soil Dynamics and Earthquake Engineering, 2017, 97: 216-232. doi: 10.1016/j.soildyn.2017.03.011
    [22]
    徐琨鹏. 地下结构拟静力抗震分析方法及推覆试验研究[D]. 哈尔滨: 中国地震局工程力学研究所, 2019.

    XU Kunpeng. Quasi-static Seismic Analysis Method and Pushover Test of Underground Structures[D]. Harbin: Institute of Engineering Mechanics, China Earthquake Administration, 2019. (in Chinese)
    [23]
    HUANG C C, WU S H, WU H J. Seismic displacement criterion for soil retaining walls based on soil strength mobilization[J]. Journal of Geotechnical and Geoenvironmental Engineering, 2009, 135(1): 74-83. doi: 10.1061/(ASCE)1090-0241(2009)135:1(74)
    [24]
    张建经, 韩鹏飞. 重力式挡墙基于位移的抗震设计方法研究: 大型振动台模型试验研究[J]. 岩土工程学报, 2012, 34(3): 416-423. http://cge.nhri.cn/cn/article/id/14513

    ZHANG Jianjing, HAN Pengfei. Displacement based seismic design method for gravity retaining walls-Large scale shaking table tests[J]. Chinese Journal of Geotechnical Engineering, 2012, 34(3): 416-423. (in Chinese) http://cge.nhri.cn/cn/article/id/14513
  • Related Articles

    [1]ZHANG Junjie, GU Xingwen, REN Guofeng, ZHOU Chuner, WANG Nianxiang. Test method for axial force at pile top in centrifugal model tests on pile-net composite foundation[J]. Chinese Journal of Geotechnical Engineering, 2024, 46(S1): 264-267. DOI: 10.11779/CJGE2024S10049
    [2]YUAN Guangzong, LI Jiandong. Centrifugal model tests on influences of loads of a coal storage yard on foundation and pile-based coal shed[J]. Chinese Journal of Geotechnical Engineering, 2024, 46(S1): 197-201. DOI: 10.11779/CJGE2024S10029
    [3]WANG Zhongtao, LUO Guangyu, KONG Gangqiang, ZHANG Yu, FAN Zhixian, YANG Qing. Visual centrifugal model tests on capacity of anchor piles and displacement field around piles under oblique pull-out loads[J]. Chinese Journal of Geotechnical Engineering, 2023, 45(1): 189-195. DOI: 10.11779/CJGE20211441
    [4]WANG Nian-xiang, ZHOU Chun-er, DONG Hua-gang, LI Zhen, HE Yuan-tang. Centrifugal model tests on CFG pile-net composite foundation under super-large loads[J]. Chinese Journal of Geotechnical Engineering, 2022, 44(S2): 87-91. DOI: 10.11779/CJGE2022S2019
    [5]RAN Qi-ren, WANG Xu, WANG Bo-lin, JIANG Dai-jun, ZHANG Yan-jie, LI Jian-dong. Model tests on influences of excavation of foundation pits on bending moment and deformation of pile foundation of adjacent buildings[J]. Chinese Journal of Geotechnical Engineering, 2021, 43(S1): 132-137. DOI: 10.11779/CJGE2021S1024
    [6]ZHANG Yan, CHEN Pei, ZHAO Zhen-xin. Experimental study on squeezed branch pile foundation in soft soil ground[J]. Chinese Journal of Geotechnical Engineering, 2013, 35(zk2): 994-997.
    [7]ZHANG Zhong-miao, ZHANG Qian-qing, ZHANG Guang-xing, SHI Mao-fei. Large tonnage tests on super-long piles in soft soil area[J]. Chinese Journal of Geotechnical Engineering, 2011, 33(4): 535.
    [8]LIU Kun, ZHAO Chun-feng. Model tests on bored piles under vertical load on different pile-tip soils[J]. Chinese Journal of Geotechnical Engineering, 2011, 33(3): 490.
    [9]BUI Phu Doanh, LUO Qiang, ZHANG Liang. Analysis on pile cap effect in composite foundation with high strength pile by centrifugal model tests[J]. Chinese Journal of Geotechnical Engineering, 2008, 30(8): 1158-1164.
    [10]ZHANG Zhongmiao, XIN Gongfeng, YU Hongliang, XIONG Wen. Study on floating pipe piles and disposal measures in soft soil foundation[J]. Chinese Journal of Geotechnical Engineering, 2006, 28(5): 549-552.

Catalog

    Article views PDF downloads Cited by()
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return