Citation: | WANG Tao, FAN Hong, WANG Kangren, ZHOU Guoqing, WANG Liangliang. A unified constitutive model for dual-yield surface for warm frozen soil and its verification[J]. Chinese Journal of Geotechnical Engineering, 2025, 47(1): 135-143. DOI: 10.11779/CJGE20231031 |
[1] |
马巍, 王大雁. 中国冻土力学研究50 a回顾与展望[J]. 岩土工程学报, 2012, 34(4): 625-640. http://cge.nhri.cn/article/id/14543
MA Wei, WANG Dayan. Studies on frozen soil mechanics in China in past 50 years and their prospect[J]. Chinese Journal of Geotechnical Engineering, 2012, 34(4): 625-640. (in Chinese) http://cge.nhri.cn/article/id/14543
|
[2] |
朱元林, 张家懿, 彭万巍, 等. 冻土的单轴压缩本构关系[J]. 冰川冻土, 1992, 14(3): 210-217.
ZHU Yuanlin, ZHANG Jiayi, PENG Wanwei, et al. Constitutive Relations of Frozen Soil in Uniaxial Compression[J]. Journal of Glaciology and Geocryology, 1992, 14(3): 210-217. (in Chinese)
|
[3] |
苗天德, 魏雪霞, 张长庆. 冻土蠕变过程的微结构损伤理论[J]. 中国科学(B辑), 1995, 25(3): 309-317.
(MIAO Tiande, WEI Xuexia, ZHANG Changqing. Creep of frozen soil based on microstructural damage mechanics[J]. Science in China (Series B), 1995, 25(3): 309-317. (in Chinese
|
[4] |
LIU E L, LAI Y M, WONG H, et al. An elastoplastic model for saturated freezing soils based on thermo-poromechanics[J]. International Journal of Plasticity, 2018, 107: 246-285. doi: 10.1016/j.ijplas.2018.04.007
|
[5] |
CHANG D, LAI Y M, ZHANG M Y. A meso-macroscopic constitutive model of frozen saline sandy soil based on homogenization theory[J]. International Journal of Mechanical Sciences, 2019, 159: 246-259. doi: 10.1016/j.ijmecsci.2019.06.002
|
[6] |
WANG P, LIU E L, ZHI B, et al. A macro–micro viscoelastic-plastic constitutive model for saturated frozen soil[J]. Mechanics of Materials, 2020, 147: 103411. doi: 10.1016/j.mechmat.2020.103411
|
[7] |
FU T T, ZHU Z W, ZHANG D, et al. Research on damage viscoelastic dynamic constitutive model of frozen soil[J]. Cold Regions Science and Technology, 2019, 160: 209-221. doi: 10.1016/j.coldregions.2019.01.017
|
[8] |
张德, 刘恩龙, 刘星炎, 等. 基于修正Mohr-Coulomb屈服准则的冻结砂土损伤本构模型[J]. 岩石力学与工程学报, 2018, 37(4): 978-986.
ZHANG De, LIU Enlong, LIU Xingyan, et al. A damage constitutive model for frozen sandy soils based on modified Mohr-Coulomb yield criterion[J]. Chinese Journal of Rock Mechanics and Engineering, 2018, 37(4): 978-986. (in Chinese)
|
[9] |
张革, 刘恩龙. 基于CT动态扫描的冻土细观二元介质本构模型[J]. 岩土工程学报, 2023, 45(9): 1888-1896. doi: 10.11779/CJGE20220629
ZHANG Ge, LIU Enlong. Binary-medium constitutive model for frozen soils based on CT dynamic scanning[J]. Chinese Journal of Geotechnical Engineering, 2023, 45(9): 1888-1896. (in Chinese) doi: 10.11779/CJGE20220629
|
[10] |
LAI Y M, YANG Y G, CHANG X X, et al. Strength criterion and elastoplastic constitutive model of frozen silt in generalized plastic mechanics[J]. International Journal of Plasticity, 2010, 26(10): 1461-1484. doi: 10.1016/j.ijplas.2010.01.007
|
[11] |
MA D D, MA Q Y, YAO Z M, et al. Static-dynamic coupling mechanical properties and constitutive model of artificial frozen silty clay under triaxial compression[J]. Cold Regions Science and Technology, 2019, 167: 102858. doi: 10.1016/j.coldregions.2019.102858
|
[12] |
ZHAO Y H, LAI Y M, PEI W S, et al. An anisotropic bounding surface elastoplastic constitutive model for frozen sulfate saline silty clay under cyclic loading[J]. International Journal of Plasticity, 2020, 129: 102668. doi: 10.1016/j.ijplas.2020.102668
|
[13] |
雷乐乐, 王大雁, 李栋伟, 等. 考虑应力水平影响的冻结黏土变形特性[J]. 岩石力学与工程学报, 2021, 40(增刊1): 2905-2912.
LEI Lele, WANG Dayan, LI Dongwei, et al. Deformation characteristics of frozen clay with considering the influence of mean principal stress[J]. Chinese Journal of Rock Mechanics and Engineering, 2021, 40(S1): 2905-2912. (in Chinese)
|
[14] |
NISHIMURA S, WANG J Y. A simple framework for describing strength of saturated frozen soils as multi-phase coupled system[J]. Géotechnique, 2019, 69(8): 659-671.
|
[15] |
汪恩良, 任志凤, 韩红卫, 等. 超低温冻结黏土单轴抗压力学性质试验研究[J]. 岩土工程学报, 2021, 43(10): 1851-1860. doi: 10.11779/CJGE202110011
WANG Enliang, REN Zhifeng, HAN Hongwei, et al. Experimental study on uniaxial compressive strength of ultra-low temperature frozen clay[J]. Chinese Journal of Geotechnical Engineering, 2021, 43(10): 1851-1860. (in Chinese) doi: 10.11779/CJGE202110011
|
[16] |
ZHAO Y H, ZHANG M Y, GAO J. Research progress of constitutive models of frozen soils: a review[J]. Cold Regions Science and Technology, 2023, 206: 103720.
|
[17] |
MA F, LIU E, SONG B, et al. A poromechanics-based constitutive model for warm frozen soil[J]. Cold Regions Science and Technology, 2022, 199: 103555.
|
[18] |
宋丙堂, 刘恩龙, 张德, 等. 高温冻结粉土力学特性试验研究[J]. 冰川冻土, 2019, 41(3): 595-605.
SONG Bingtang, LIU Enlong, ZHANG De, et al. Experimental study on the mechanical properties of warm frozen silt soils[J]. Journal of Glaciology and Geocryology, 2019, 41(3): 595-605. (in Chinese)
|
[19] |
路贵林. 多年冻土区高温冻土力学特性试验研究[D]. 徐州: 中国矿业大学, 2015.
LU Guilin. Experimental Study on Mechanical Properties of High Temperature Frozen Soil in Permafrost Regions[D]. Xuzhou: China University of Mining and Technology, 2015. (in Chinese)
|
[20] |
LIAO M K, LAI Y M, LIU E L, et al. A fractional order creep constitutive model of warm frozen silt[J]. Acta Geotechnica, 2017, 12(2): 377-389.
|
[21] |
LAI Y M, LI J B, LI Q Z. Study on damage statistical constitutive model and stochastic simulation for warm ice-rich frozen silt[J]. Cold Regions Science and Technology, 2012, 71: 102-110.
|
[22] |
ROSCOE K H, SCHOFIELD A N, THURAIRAJAH A. Yielding of clays in states wetter than critical[J]. Géotechnique, 1963, 13(3): 211-240.
|
[23] |
ROSCOE K H, BURLAND J. On the Generalized Stress-Strain Behaviour of Wet Clay[M]. Cambrige: Cambridge University Press, 1968.
|
[24] |
姚仰平, 田易川, 崔文杰. 理想膨胀性非饱和土UH模型[J]. 岩土工程学报, 2023, 45(6): 1103-1112. doi: 10.11779/CJGE20220294
YAO Yangping, TIAN Yichuan, CUI Wenjie. UH model for ideal expansive unsaturated soils[J]. Chinese Journal of Geotechnical Engineering, 2023, 45(6): 1103-1112. (in Chinese) doi: 10.11779/CJGE20220294
|