• 全国中文核心期刊
  • 中国科技核心期刊
  • 美国工程索引(EI)收录期刊
  • Scopus数据库收录期刊
WANG Tao, FAN Hong, WANG Kangren, ZHOU Guoqing, WANG Liangliang. A unified constitutive model for dual-yield surface for warm frozen soil and its verification[J]. Chinese Journal of Geotechnical Engineering, 2025, 47(1): 135-143. DOI: 10.11779/CJGE20231031
Citation: WANG Tao, FAN Hong, WANG Kangren, ZHOU Guoqing, WANG Liangliang. A unified constitutive model for dual-yield surface for warm frozen soil and its verification[J]. Chinese Journal of Geotechnical Engineering, 2025, 47(1): 135-143. DOI: 10.11779/CJGE20231031

A unified constitutive model for dual-yield surface for warm frozen soil and its verification

More Information
  • Received Date: October 19, 2023
  • Available Online: April 17, 2024
  • The constitutive model for warm frozen soil is crucial for accurately calculating the stress and deformation of frozen soil layers. Based on the modified Cambridge model and the dual-yield surface theory, taking into account the influences of cohesion and internal friction angle of warm frozen soil, the deformation characteristics of the specimens are described by the overall deformation curve εv-lnp. The hardening parameters of the current yield surface and reference yield surface are modified by stress path correlation factors. A unified constitutive model of dual-yield surface for warm frozen soil is proposed. The incremental form of the stress-strain relationship is obtained based on the elastic-plastic theory. A convenient method for determining the model parameters is provided. The consolidation parameters and potential strength parameters that reflect the current state of warm frozen soil are defined. An analysis of the dynamic cyclic relationship and interdependence between these parameters and hardening parameters is presented. The experimental data are used to validate the constructed constitutive model, and the results show that the proposed model can accurately predict the stress-strain behavior of warm frozen soil under conventional triaxial stress conditions.
  • [1]
    马巍, 王大雁. 中国冻土力学研究50 a回顾与展望[J]. 岩土工程学报, 2012, 34(4): 625-640. http://cge.nhri.cn/article/id/14543

    MA Wei, WANG Dayan. Studies on frozen soil mechanics in China in past 50 years and their prospect[J]. Chinese Journal of Geotechnical Engineering, 2012, 34(4): 625-640. (in Chinese) http://cge.nhri.cn/article/id/14543
    [2]
    朱元林, 张家懿, 彭万巍, 等. 冻土的单轴压缩本构关系[J]. 冰川冻土, 1992, 14(3): 210-217.

    ZHU Yuanlin, ZHANG Jiayi, PENG Wanwei, et al. Constitutive Relations of Frozen Soil in Uniaxial Compression[J]. Journal of Glaciology and Geocryology, 1992, 14(3): 210-217. (in Chinese)
    [3]
    苗天德, 魏雪霞, 张长庆. 冻土蠕变过程的微结构损伤理论[J]. 中国科学(B辑), 1995, 25(3): 309-317.

    (MIAO Tiande, WEI Xuexia, ZHANG Changqing. Creep of frozen soil based on microstructural damage mechanics[J]. Science in China (Series B), 1995, 25(3): 309-317. (in Chinese
    [4]
    LIU E L, LAI Y M, WONG H, et al. An elastoplastic model for saturated freezing soils based on thermo-poromechanics[J]. International Journal of Plasticity, 2018, 107: 246-285. doi: 10.1016/j.ijplas.2018.04.007
    [5]
    CHANG D, LAI Y M, ZHANG M Y. A meso-macroscopic constitutive model of frozen saline sandy soil based on homogenization theory[J]. International Journal of Mechanical Sciences, 2019, 159: 246-259. doi: 10.1016/j.ijmecsci.2019.06.002
    [6]
    WANG P, LIU E L, ZHI B, et al. A macro–micro viscoelastic-plastic constitutive model for saturated frozen soil[J]. Mechanics of Materials, 2020, 147: 103411. doi: 10.1016/j.mechmat.2020.103411
    [7]
    FU T T, ZHU Z W, ZHANG D, et al. Research on damage viscoelastic dynamic constitutive model of frozen soil[J]. Cold Regions Science and Technology, 2019, 160: 209-221. doi: 10.1016/j.coldregions.2019.01.017
    [8]
    张德, 刘恩龙, 刘星炎, 等. 基于修正Mohr-Coulomb屈服准则的冻结砂土损伤本构模型[J]. 岩石力学与工程学报, 2018, 37(4): 978-986.

    ZHANG De, LIU Enlong, LIU Xingyan, et al. A damage constitutive model for frozen sandy soils based on modified Mohr-Coulomb yield criterion[J]. Chinese Journal of Rock Mechanics and Engineering, 2018, 37(4): 978-986. (in Chinese)
    [9]
    张革, 刘恩龙. 基于CT动态扫描的冻土细观二元介质本构模型[J]. 岩土工程学报, 2023, 45(9): 1888-1896. doi: 10.11779/CJGE20220629

    ZHANG Ge, LIU Enlong. Binary-medium constitutive model for frozen soils based on CT dynamic scanning[J]. Chinese Journal of Geotechnical Engineering, 2023, 45(9): 1888-1896. (in Chinese) doi: 10.11779/CJGE20220629
    [10]
    LAI Y M, YANG Y G, CHANG X X, et al. Strength criterion and elastoplastic constitutive model of frozen silt in generalized plastic mechanics[J]. International Journal of Plasticity, 2010, 26(10): 1461-1484. doi: 10.1016/j.ijplas.2010.01.007
    [11]
    MA D D, MA Q Y, YAO Z M, et al. Static-dynamic coupling mechanical properties and constitutive model of artificial frozen silty clay under triaxial compression[J]. Cold Regions Science and Technology, 2019, 167: 102858. doi: 10.1016/j.coldregions.2019.102858
    [12]
    ZHAO Y H, LAI Y M, PEI W S, et al. An anisotropic bounding surface elastoplastic constitutive model for frozen sulfate saline silty clay under cyclic loading[J]. International Journal of Plasticity, 2020, 129: 102668. doi: 10.1016/j.ijplas.2020.102668
    [13]
    雷乐乐, 王大雁, 李栋伟, 等. 考虑应力水平影响的冻结黏土变形特性[J]. 岩石力学与工程学报, 2021, 40(增刊1): 2905-2912.

    LEI Lele, WANG Dayan, LI Dongwei, et al. Deformation characteristics of frozen clay with considering the influence of mean principal stress[J]. Chinese Journal of Rock Mechanics and Engineering, 2021, 40(S1): 2905-2912. (in Chinese)
    [14]
    NISHIMURA S, WANG J Y. A simple framework for describing strength of saturated frozen soils as multi-phase coupled system[J]. Géotechnique, 2019, 69(8): 659-671.
    [15]
    汪恩良, 任志凤, 韩红卫, 等. 超低温冻结黏土单轴抗压力学性质试验研究[J]. 岩土工程学报, 2021, 43(10): 1851-1860. doi: 10.11779/CJGE202110011

    WANG Enliang, REN Zhifeng, HAN Hongwei, et al. Experimental study on uniaxial compressive strength of ultra-low temperature frozen clay[J]. Chinese Journal of Geotechnical Engineering, 2021, 43(10): 1851-1860. (in Chinese) doi: 10.11779/CJGE202110011
    [16]
    ZHAO Y H, ZHANG M Y, GAO J. Research progress of constitutive models of frozen soils: a review[J]. Cold Regions Science and Technology, 2023, 206: 103720.
    [17]
    MA F, LIU E, SONG B, et al. A poromechanics-based constitutive model for warm frozen soil[J]. Cold Regions Science and Technology, 2022, 199: 103555.
    [18]
    宋丙堂, 刘恩龙, 张德, 等. 高温冻结粉土力学特性试验研究[J]. 冰川冻土, 2019, 41(3): 595-605.

    SONG Bingtang, LIU Enlong, ZHANG De, et al. Experimental study on the mechanical properties of warm frozen silt soils[J]. Journal of Glaciology and Geocryology, 2019, 41(3): 595-605. (in Chinese)
    [19]
    路贵林. 多年冻土区高温冻土力学特性试验研究[D]. 徐州: 中国矿业大学, 2015.

    LU Guilin. Experimental Study on Mechanical Properties of High Temperature Frozen Soil in Permafrost Regions[D]. Xuzhou: China University of Mining and Technology, 2015. (in Chinese)
    [20]
    LIAO M K, LAI Y M, LIU E L, et al. A fractional order creep constitutive model of warm frozen silt[J]. Acta Geotechnica, 2017, 12(2): 377-389.
    [21]
    LAI Y M, LI J B, LI Q Z. Study on damage statistical constitutive model and stochastic simulation for warm ice-rich frozen silt[J]. Cold Regions Science and Technology, 2012, 71: 102-110.
    [22]
    ROSCOE K H, SCHOFIELD A N, THURAIRAJAH A. Yielding of clays in states wetter than critical[J]. Géotechnique, 1963, 13(3): 211-240.
    [23]
    ROSCOE K H, BURLAND J. On the Generalized Stress-Strain Behaviour of Wet Clay[M]. Cambrige: Cambridge University Press, 1968.
    [24]
    姚仰平, 田易川, 崔文杰. 理想膨胀性非饱和土UH模型[J]. 岩土工程学报, 2023, 45(6): 1103-1112. doi: 10.11779/CJGE20220294

    YAO Yangping, TIAN Yichuan, CUI Wenjie. UH model for ideal expansive unsaturated soils[J]. Chinese Journal of Geotechnical Engineering, 2023, 45(6): 1103-1112. (in Chinese) doi: 10.11779/CJGE20220294

Catalog

    Article views (265) PDF downloads (93) Cited by()
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return