• 全国中文核心期刊
  • 中国科技核心期刊
  • 美国工程索引(EI)收录期刊
  • Scopus数据库收录期刊
HU Jing, JIN Linlian, LÜ Zhihao, ZHANG Jiakang, BIAN Xuecheng. Dynamic response solutions of unsaturated soil foundation using soil-water characteristic curve considering deformation effects[J]. Chinese Journal of Geotechnical Engineering, 2025, 47(2): 397-406. DOI: 10.11779/CJGE20230800
Citation: HU Jing, JIN Linlian, LÜ Zhihao, ZHANG Jiakang, BIAN Xuecheng. Dynamic response solutions of unsaturated soil foundation using soil-water characteristic curve considering deformation effects[J]. Chinese Journal of Geotechnical Engineering, 2025, 47(2): 397-406. DOI: 10.11779/CJGE20230800

Dynamic response solutions of unsaturated soil foundation using soil-water characteristic curve considering deformation effects

More Information
  • Received Date: August 17, 2023
  • Available Online: June 04, 2024
  • To investigate the dynamic response of unsaturated soils under moving loads, a new soil-water characteristic curve (SWCC) model is established considering the deformation caused by applied load based on the traditional V-G SWCC model. Using this modified SWCC model, a dynamic governing equation for unsaturated soils, which fully describes the water-force coupling effects of unsaturated soils under dynamic loading, is derived. The governing equation is solved using the 2.5-dimensional finite element method (2.5D FEM). The obtained solutions are compared with the analytical ones for single-phase medium, double-phase saturated medium and three-phase unsaturated medium, respectively, which all confirm the accuracy of the proposed solution method. The computational time analysis for different medium models demonstrate that the 2.5D FEM is an advantageous algorithm for solving the dynamic problems of porous media. The numerical analysis reveals that using the traditional SWCC without considering the deformation will underestimate the vibration intensity of unsaturated foundations.
  • [1]
    黄长生, 周耘, 张胜男, 等. 长江流域地下水资源特征与开发利用现状[J]. 中国地质, 2021, 48(4): 979-1000.

    HUANG Changsheng, ZHOU Yun, ZHANG Shengnan, et al. Groundwater resources in the Yangtze River Basin and its current development and utilization[J]. Geology in China, 2021, 48(4): 979-1000. (in Chinese)
    [2]
    吴庆华, 汪啸, 范越. 长江中下游地下水资源战略储备选址适宜性评价指标体系[J]. 长江科学院院报, 2022, 39(8): 145-151, 158.

    WU Qinghua, WANG Xiao, FAN Yue. Evaluation index system for the suitability of groundwater strategic reserve site in middle and Lower Yangtze River[J]. Journal of Yangtze River Scientific Research Institute, 2022, 39(8): 145-151, 158. (in Chinese)
    [3]
    池田俊雄. 地盤地質と鉄道土木の 50年[J]. 応用地質, 1998, 39(1): 4-10.

    IKEDA T. 50 years of geology and railway engineering [J]. Applied Geology, 1998, 39(1): 4-10. (in Japanese)
    [4]
    Conrad, British Columbia. Canadian National Train No. Q-102-51-26 Derailment[R]. Canada: Transportation Safety Board of Canada, 1997: 1-24.
    [5]
    EASON G. The stresses produced in a semi-infinite solid by a moving surface force[J]. International Journal of Engineering Science, 1965, 2(6): 581-609. doi: 10.1016/0020-7225(65)90038-8
    [6]
    SHENG X, JONES C J C, PETYT M. Ground vibration generated by a load moving along a railway track[J]. Journal of Sound and Vibration, 1999, 228(1): 129-156. doi: 10.1006/jsvi.1999.2406
    [7]
    雷晓燕, 徐斌, 徐满清. 半无限弹性空间中移动荷载动力响应的频域-波数域比例边界有限元法分析[J]. 振动工程学报, 2017, 30(5): 798-805.

    LEI Xiaoyan, XU Bin, XU Manqing. Using the frequency-wave domain scaled boundary finite element method for the dynamic response of the elastic half space due to moving loads[J]. Journal of Vibration Engineering, 2017, 30(5): 798-805. (in Chinese)
    [8]
    BIOT M A. Mechanics of deformation and acoustic propagation in porous media[J]. Journal of Applied Physics, 1962, 33(4): 1482-1498. doi: 10.1063/1.1728759
    [9]
    LU J F, JENG D S. A half-space saturated poro-elastic medium subjected to a moving point load[J]. International Journal of Solids and Structures, 2007, 44(2): 573-586. doi: 10.1016/j.ijsolstr.2006.05.020
    [10]
    CAI Y Q, SUN H L, XU C J. Response of railway track system on poroelastic half-space soil medium subjected to a moving train load[J]. International Journal of Solids and Structures, 2008, 45(18/19): 5015-5034. http://core.ac.uk/download/pdf/82345375.pdf
    [11]
    GAO G Y, CHEN Q S, HE J F, et al. Investigation of ground vibration due to trains moving on saturated multi-layered ground by 2.5D finite element method[J]. Soil Dynamics and Earthquake Engineering, 2012, 40: 87-98. doi: 10.1016/j.soildyn.2011.12.003
    [12]
    BIAN X C, HU J, THOMPSON D, et al. Pore pressure generation in a poro-elastic soil under moving train loads[J]. Soil Dynamics and Earthquake Engineering, 2019, 125: 105711. doi: 10.1016/j.soildyn.2019.105711
    [13]
    胡静, 唐跃, 张家康, 等. 高速列车荷载作用下饱和软土地基动力响应研究[J]. 岩土力学, 2021, 42(11): 3169-3181.

    HU Jing, TANG Yue, ZHANG Jiakang, et al. Dynamic responses of saturated soft soil foundation under high speed train[J]. Rock and Soil Mechanics, 2021, 42(11): 3169-3181. (in Chinese)
    [14]
    徐明江. 非饱和土地基与基础的动力响应研究[D]. 广州: 华南理工大学, 2010.

    XU Mingjiang. Study on Dynamic Response of Unsaturated Soil Foundation and Foundation[D]. Guangzhou: South China University of Technology, 2010. (in Chinese)
    [15]
    MUALEM Y. A new model for predicting the hydraulic conductivity of unsaturated porous media[J]. Water Resources Research, 1976, 12(3): 513-522. doi: 10.1029/WR012i003p00513
    [16]
    LU Z, FANG R, YAO H L, et al. Dynamic responses of unsaturated half-space soil to a moving harmonic rectangular load[J]. International Journal for Numerical and Analytical Methods in Geomechanics, 2018, 42(9): 1057-1077. doi: 10.1002/nag.2780
    [17]
    FANG R, LU Z, YAO H L, et al. Study on dynamic responses of unsaturated railway subgrade subjected to moving train load[J]. Soil Dynamics and Earthquake Engineering, 2018, 115: 319-323. doi: 10.1016/j.soildyn.2018.08.037
    [18]
    GAO G Y, YAO S F, YANG J, et al. Investigating ground vibration induced by moving train loads on unsaturated ground using 2.5D FEM[J]. Soil Dynamics and Earthquake Engineering, 2019, 124: 72-85. doi: 10.1016/j.soildyn.2019.05.034
    [19]
    李绍毅. 土体饱和度对移动荷载引起多层非饱和铁路地基振动的影响[J]. 岩土力学, 2021, 42(1): 151-159, 167.

    LI Shaoyi. Influences of soil saturation on the vibration of multi-layer unsaturated railway ground induced by moving load[J]. Rock and Soil Mechanics, 2021, 42(1): 151-159, 167. (in Chinese)
    [20]
    Corey R H Brooks and A T. Hydraulic properties of porous media and their relation to drainage design[J]. Transactions of the ASAE, 1964, 7(1): 26-28. doi: 10.13031/2013.40684
    [21]
    VAN GENUCHTEN M T. A closed-form equation for predicting the hydraulic conductivity of unsaturated Soils1[J]. Soil Science Society of America Journal, 1980, 44(5): 892. doi: 10.2136/sssaj1980.03615995004400050002x
    [22]
    FREDLUND D G, XING A Q. Equations for the soil-water characteristic curve[J]. Canadian Geotechnical Journal, 1994, 31(4): 521-532. doi: 10.1139/t94-061
    [23]
    孙德安. 非饱和土力学特性及本构模型[J]. 岩土工程学报, 2023, 45(1): 1-23. doi: 10.11779/CJGE20221450

    SUN De'an. Mechanical behaviors and constitutive model for unsaturated soils[J]. Chinese Journal of Geotechnical Engineering, 2023, 45(1): 1-23. (in Chinese) doi: 10.11779/CJGE20221450
    [24]
    蔡国庆, 田京京, 李舰, 等. 考虑变形及滞回效应影响的三维土-水特征曲面模型[J]. 土木工程学报, 2019, 52(11): 97-107.

    CAI Guoqing, TIAN Jingjing, LI Jian, et al. A three-dimensional soil water characteristic surface model considering deformation and hysteresis effect[J]. China Civil Engineering Journal, 2019, 52(11): 97-107. (in Chinese)
    [25]
    胡冉, 陈益峰, 周创兵. 考虑变形效应的非饱和土相对渗透系数模型[J]. 岩石力学与工程学报, 2013, 32(6): 1279-1287. doi: 10.3969/j.issn.1000-6915.2013.06.023

    HU Ran, CHEN Yifeng, ZHOU Chuangbing. A relative hydraulic conductivity model for unsaturated deformable soils[J]. Chinese Journal of Rock Mechanics and Engineering, 2013, 32(6): 1279-1287. (in Chinese) doi: 10.3969/j.issn.1000-6915.2013.06.023
    [26]
    张雪东, 赵成刚, 刘艳, 等. 变形对土水特征曲线影响规律模拟研究[J]. 土木工程学报, 2011, 44(7): 119-126.

    ZHANG Xuedong, ZHAO Chenggang, LIU Yan, et al. Modeling study of the relationship between deformation and water retention curve[J]. China Civil Engineering Journal, 2011, 44(7): 119-126. (in Chinese)
    [27]
    YANG Y B, HUNG H H. A 2.5D finite/infinite element approach for modelling visco-elastic bodies subjected to moving loads[J]. International Journal for Numerical Methods in Engineering, 2001, 51(11): 1317-1336. doi: 10.1002/nme.208
    [28]
    王勖成. 有限单元法[M]. 北京: 清华大学出版社, 2003.

    WANG Xucheng. Finite Element Method[M]. Beijing: Tsinghua University Press, 2003. (in Chinese)
    [29]
    HALL L. Simulations and analyses of train-induced ground vibrations in finite element models[J]. Soil Dynamics and Earthquake Engineering, 2003, 23(5): 403-413. doi: 10.1016/S0267-7261(02)00209-9

Catalog

    Article views (225) PDF downloads (41) Cited by()
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return