• 全国中文核心期刊
  • 中国科技核心期刊
  • 美国工程索引(EI)收录期刊
  • Scopus数据库收录期刊
LI Zewen, TAN Yong, LIAO Shaoming, LI Zhiyi, LI Hang. Field tests on performance of diaphragm wall for an ultra-deep excavation in Shanghai soft ground[J]. Chinese Journal of Geotechnical Engineering, 2024, 46(11): 2380-2390. DOI: 10.11779/CJGE20230760
Citation: LI Zewen, TAN Yong, LIAO Shaoming, LI Zhiyi, LI Hang. Field tests on performance of diaphragm wall for an ultra-deep excavation in Shanghai soft ground[J]. Chinese Journal of Geotechnical Engineering, 2024, 46(11): 2380-2390. DOI: 10.11779/CJGE20230760

Field tests on performance of diaphragm wall for an ultra-deep excavation in Shanghai soft ground

More Information
  • Received Date: August 09, 2023
  • Available Online: January 09, 2024
  • Based on the field observation, the spatial characteristics of the diaphragm wall for a 31.5 m-deep excavation of a passageway project in Shanghai downtown under the coupling effects of excavation and dewatering are investigated. The results show that: (1) With the small length-depth ratio and length-width ratio, due to the corner effects, the lateral deflection of the diaphragm wall exhibits dramatical spatial effects, and the induced flexure along the length is great. The local deflection-span ratio (DSR) near the pit corner exhibits larger volume than that in the middle, with the average local DSR about 0.15δh/He to 0.23δh/He for the middle-span position and 0.32δh/He to 0.56δh/He for the position near the corner. (2) The maximum wall deflection increases non-linearly with the excavation depth H, and its rate of change raises especially when the excavation depth exceeds 12 m. (3) The excessive pre-dewatering dramatically enhances the deformation of the diaphragm wall, leading to a significant increase in the cumulative deformation of the subsequent excavation. Consequently, during the excavation, the maximum wall deflections and the maximum vertical displacement of wall top are 0.7%He and 0.1%He (uplift), respectively, while the uplift of column is 0.2%He, twice to the wall uplift. All of them are significantly larger than the statistics of normal Shanghai metro stations (excavation depth of 16 to 20 m). Thus the unloading effects of pre-dewatering should be paid great attention to during the construction of ultra-deep excavations, which should be substituted by step dewatering.
  • [1]
    郑刚. 软土地区基坑工程变形控制方法及工程应用[J]. 岩土工程学报, 2022, 44(1): 1-36. doi: 10.11779/CJGE202201001

    ZHENG Gang. Method and application of deformation control of excavations in soft ground[J]. Chinese Journal of Geotechnical Engineering, 2022, 44(1): 1-36. (in Chinese) doi: 10.11779/CJGE202201001
    [2]
    LIU G B, JIANG R J, NG C W W, et al. Deformation characteristics of a 38 m deep excavation in soft clay[J]. Canadian Geotechnical Journal, 2011, 48(12): 1817-1828. doi: 10.1139/t11-075
    [3]
    张治国, 张孟喜, 王卫东. 基坑开挖对临近地铁隧道影响的两阶段分析方法[J]. 岩土力学, 2011, 32(7): 2085-2092. doi: 10.3969/j.issn.1000-7598.2011.07.028

    ZHANG Zhiguo, ZHANG Mengxi, WANG Weidong. Two-stage analysis method of influence of foundation pit excavation on adjacent subway tunnel[J]. Rock and Soil Mechanics, 2011, 32(7): 2085-2092. (in Chinese) doi: 10.3969/j.issn.1000-7598.2011.07.028
    [4]
    冯世进, 高广运, 艾鸿涛, 等. 邻近地铁隧道的基坑群开挖变形分析[J]. 岩土工程学报, 2008, 30(增刊1): 112-117.

    FENG Shijin, GAO Guangyun, AI Hongtao, et al. Deformation analysis of foundation pit group adjacent to subway tunnel[J]. Chinese Journal of Geotechnical Engineering, 2008, 30(S1): 112-117. (in Chinese)
    [5]
    郑刚, 聂东清, 程雪松, 等. 基坑分级支护的模型试验研究[J]. 岩土工程学报, 2017, 39(5): 784-794. doi: 10.11779/CJGE201705002

    ZHENG Gang, NIE Dongqing, CHENG Xuesong, et al. Experimental study on multi-bench retaining foundation pit[J]. Chinese Journal of Geotechnical Engineering, 2017, 39(5): 784-794. (in Chinese) doi: 10.11779/CJGE201705002
    [6]
    LIAO S M, WEI S F, SHEN S L. Structural responses of existing metro stations to adjacent deep excavations in Suzhou, China[J]. Journal of Performance of Constructed Facilities, 2016, 30(4): 04015089. doi: 10.1061/(ASCE)CF.1943-5509.0000845
    [7]
    陈仁朋, 刘书伦, 孟凡衍, 等. 软黏土地层基坑开挖对旁侧隧道影响离心模型试验研究[J]. 岩土工程学报, 2020, 42(6): 1132-1138. doi: 10.11779/CJGE202006018

    CHEN Renpeng, LIU Shulun, MENG Fanyan, et al. Centrifuge modeling of excavation effects on a nearby tunnel in soft clay[J]. Chinese Journal of Geotechnical Engineering, 2020, 42(6): 1132-1138. (in Chinese) doi: 10.11779/CJGE202006018
    [8]
    李航, 廖少明, 何君佐, 等. 软土基坑分步开挖卸荷时效及其对邻侧隧道影响[J]. 中南大学学报(自然科学版), 2023, 54(3): 1044-1053.

    LI Hang, LIAO Shaoming, HE Junzuo, et al. Time effect of step-by-step excavation unloading in soft soils and its influence on adjacent tunnels[J]. Journal of Central South University (Science and Technology), 2023, 54(3): 1044-1053. (in Chinese)
    [9]
    LI H, TANG Y J, LIAO S M, et al. Structural response and preservation of historic buildings adjacent to oversized deep excavation[J]. Journal of Performance of Constructed Facilities, 2021, 35(6): 04021095. doi: 10.1061/(ASCE)CF.1943-5509.0001676
    [10]
    TAN Y, HUANG R Q, KANG Z J, et al. Covered semi-top-down excavation of subway station surrounded by closely spaced buildings in downtown Shanghai: building response[J]. Journal of Performance of Constructed Facilities, 2016, 30(6): 04016040. doi: 10.1061/(ASCE)CF.1943-5509.0000892
    [11]
    徐中华, 王建华, 王卫东. 上海地区深基坑工程中地下连续墙的变形性状[J]. 土木工程学报, 2008, 41(8): 81-86.

    XU Zhonghua, WANG Jianhua, WANG Weidong. Deformation behavior of diaphragm walls in deep excavations in Shanghai[J]. China Civil Engineering Journal, 2008, 41(8): 81-86. (in Chinese)
    [12]
    廖少明, 魏仕锋, 谭勇, 等. 苏州地区大尺度深基坑变形性状实测分析[J]. 岩土工程学报, 2015, 37(3): 458-469. doi: 10.11779/CJGE201503009

    LIAO Shaoming, WEI Shifeng, TAN Yong, et al. Field performance of large-scale deep excavations in Suzhou[J]. Chinese Journal of Geotechnical Engineering, 2015, 37(3): 458-469. (in Chinese) doi: 10.11779/CJGE201503009
    [13]
    TAN Y, WANG D L. Characteristics of a large-scale deep foundation pit excavated by the central-island technique in Shanghai soft clay. Ⅱ: top-down construction of the peripheral rectangular pit[J]. Journal of Geotechnical and Geoenvironmental Engineering, 2013, 139(11): 1894-1910. doi: 10.1061/(ASCE)GT.1943-5606.0000929
    [14]
    TAN Y, FAN D D, LU Y. Statistical analyses on a database of deep excavations in Shanghai soft clays in China from 1995–2018[J]. Practice Periodical on Structural Design and Construction, 2022, 27(1): 04021067. doi: 10.1061/(ASCE)SC.1943-5576.0000646
    [15]
    郑刚, 曾超峰. 基坑开挖前潜水降水引起的地下连续墙侧移研究[J]. 岩土工程学报, 2013, 35(12): 2153-2163. http://cge.nhri.cn/article/id/15591

    ZHENG Gang, ZENG Chaofeng. Lateral displacement of diaphragm wall by dewatering of phreatic water before excavation[J]. Chinese Journal of Geotechnical Engineering, 2013, 35(12): 2153-2163. (in Chinese) http://cge.nhri.cn/article/id/15591
    [16]
    曾超峰, 郑刚, 薛秀丽. 大面积基坑开挖前预降水对支护墙变形的影响研究[J]. 岩土工程学报, 2017, 39(6): 1012-1021. doi: 10.11779/CJGE201706006

    ZENG Chaofeng, ZHENG Gang, XUE Xiuli. Wall deflection induced by pre-excavation dewatering in large-scale excavations[J]. Chinese Journal of Geotechnical Engineering, 2017, 39(6): 1012-1021. (in Chinese) doi: 10.11779/CJGE201706006
    [17]
    DG/TJ08-61—2018基坑工程技术标准[S]. 上海: 同济大学出版社, 2018.

    DG/TJ08-61—2018 Technical Code for Excavation Engineering[S]. Shanghai: Tongji University Press: 2018. (in Chinese)
    [18]
    OU C Y, CHIOU D C, WU T S. Three-dimensional finite element analysis of deep excavations[J]. Journal of Geotechnical Engineering, 1996, 122(5): 337-345. doi: 10.1061/(ASCE)0733-9410(1996)122:5(337)
    [19]
    LEE F H, YONG K Y, QUAN K C N, et al. Effect of corners in strutted excavations: field monitoring and case histories[J]. Journal of Geotechnical and Geoenvironmental Engineering, 1998, 124(4): 339-349. doi: 10.1061/(ASCE)1090-0241(1998)124:4(339)
    [20]
    FINNO R J, BLACKBURN J T, ROBOSKI J F. Three-dimensional effects for supported excavations in clay[J]. Journal of Geotechnical and Geoenvironmental Engineering, 2007, 133(1): 30-36. doi: 10.1061/(ASCE)1090-0241(2007)133:1(30)
    [21]
    PECK. Deep excavation and tunnelling in soft ground[C]// ICSMFE Proc 7th Int Conf SMFE State of the Art Volume. Mexico: Balkema, 1969.
    [22]
    KUNG G T, JUANG C H, HSIAO E C, et al. Simplified model for wall deflection and ground-surface settlement caused by braced excavation in clays[J]. Journal of Geotechnical and Geoenvironmental Engineering, 2007, 133(6): 731-747. doi: 10.1061/(ASCE)1090-0241(2007)133:6(731)
    [23]
    TAN Y, WANG D L. Characteristics of a large-scale deep foundation pit excavated by the central-island technique in Shanghai soft clay. Ⅰ: bottom-up construction of the central cylindrical shaft[J]. Journal of Geotechnical and Geoenvironmental Engineering, 2013, 139(11): 1875-1893. doi: 10.1061/(ASCE)GT.1943-5606.0000928
    [24]
    OU C Y, HSIEH P G, CHIOU D C. Characteristics of ground surface settlement during excavation[J]. Canadian Geotechnical Journal, 1993, 30(5): 758-767. doi: 10.1139/t93-068
    [25]
    徐中华. 上海地区支护结构与主体地下结构相结合的深基坑变形性状研究[D]. 上海: 上海交通大学, 2007.

    XU Zhonghua. Deformation Behavior of Deep Excavations Supported by Permanent Structure in Shanghai Soft Deposit[D]. Shanghai: Shanghai Jiao Tong University, 2007. (in Chinese)
    [26]
    刘国彬, 侯学渊. 软土基坑隆起变形的残余应力分析法[J]. 地下工程与隧道, 1996(2): 2-7.

    LIU Guobin, HOU Xueyuan. Residual stress analysis method for uplift deformation of soft soil foundation pit[J]. Undergrourd Engineering and Tunmels, 1996(2): 2-7. (in Chinese)
    [27]
    HSIEH P G, OU C Y. Shape of ground surface settlement profiles caused by excavation[J]. Canadian Geotechnical Journal, 1998, 35(6): 1004-1017. doi: 10.1139/t98-056
  • Related Articles

    [1]LIU Hongwei, WANG Mengqi, ZHAN Liangtong, FENG Song, WU Tao. Method and apparatus for measuring in-situ gas diffusion coefficient and permeability coefficient of unsaturated soils[J]. Chinese Journal of Geotechnical Engineering, 2024, 46(5): 948-958. DOI: 10.11779/CJGE20221228
    [2]JI Yong-xin, ZHANG Wen-jie. Experimental study on diffusion of chloride ions in unsaturated soils[J]. Chinese Journal of Geotechnical Engineering, 2021, 43(9): 1755-1760. DOI: 10.11779/CJGE202109022
    [3]XU Fei, CAI Yue-bo, QIAN Wen-xun, WEI Hua, ZHUANG Hua-xia. Mechanism of cemented soil modified by aliphatic ionic soil stabilizer[J]. Chinese Journal of Geotechnical Engineering, 2019, 41(9): 1679-1687. DOI: 10.11779/CJGE201909012
    [4]HUANG Wei, LIU Qing-bing, XIANG Wei, ZHANG Yun-long, WANG Zhen-hua, DAO Minh Huan. Water adsorption characteristics and water retention model for montmorillonite modified by ionic soil stabilizer[J]. Chinese Journal of Geotechnical Engineering, 2019, 41(1): 121-130. DOI: 10.11779/CJGE201901013
    [5]ZHANG Wen-jie, GU Chen, LOU Xiao-hong. Measurement of hydraulic conductivity and diffusion coefficient of backfill for soil-bentonite cutoff wall under low consolidation pressure[J]. Chinese Journal of Geotechnical Engineering, 2017, 39(10): 1915-1921. DOI: 10.11779/CJGE201710021
    [6]HUANG Qing-fu, ZHAN Mei-li, SHENG Jin-chang, LUO Yu-long, ZHANG Xia. Numerical method to generate granular assembly with any desired relative density based on DEM[J]. Chinese Journal of Geotechnical Engineering, 2015, 37(3): 537-543. DOI: 10.11779/CJGE201503019
    [7]LIU Qing-bing, XIANG Wei, CUI De-shan. Effect of ionic soil stabilizer on bound water of expansive soils[J]. Chinese Journal of Geotechnical Engineering, 2012, 34(10): 1887-1895.
    [8]LIU Qing-bing, XIANG Wei, CUI De-shan, CAO Li-jing. Mechanism of expansive soil improved by ionic soil stabilizer[J]. Chinese Journal of Geotechnical Engineering, 2011, 33(4): 648.
    [9]Microcosmic mechanism of ion transport in charged clay soils[J]. Chinese Journal of Geotechnical Engineering, 2010, 32(11): 1794-1799.
    [10]XI Yong, Hui, REN Jie. Laboratory determination of diffusion and distribution coefficients of contaminants in clay soil[J]. Chinese Journal of Geotechnical Engineering, 2006, 28(3): 397-402.

Catalog

    Article views PDF downloads Cited by()
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return