Citation: | LI Zewen, TAN Yong, LIAO Shaoming, LI Zhiyi, LI Hang. Field tests on performance of diaphragm wall for an ultra-deep excavation in Shanghai soft ground[J]. Chinese Journal of Geotechnical Engineering, 2024, 46(11): 2380-2390. DOI: 10.11779/CJGE20230760 |
[1] |
郑刚. 软土地区基坑工程变形控制方法及工程应用[J]. 岩土工程学报, 2022, 44(1): 1-36. doi: 10.11779/CJGE202201001
ZHENG Gang. Method and application of deformation control of excavations in soft ground[J]. Chinese Journal of Geotechnical Engineering, 2022, 44(1): 1-36. (in Chinese) doi: 10.11779/CJGE202201001
|
[2] |
LIU G B, JIANG R J, NG C W W, et al. Deformation characteristics of a 38 m deep excavation in soft clay[J]. Canadian Geotechnical Journal, 2011, 48(12): 1817-1828. doi: 10.1139/t11-075
|
[3] |
张治国, 张孟喜, 王卫东. 基坑开挖对临近地铁隧道影响的两阶段分析方法[J]. 岩土力学, 2011, 32(7): 2085-2092. doi: 10.3969/j.issn.1000-7598.2011.07.028
ZHANG Zhiguo, ZHANG Mengxi, WANG Weidong. Two-stage analysis method of influence of foundation pit excavation on adjacent subway tunnel[J]. Rock and Soil Mechanics, 2011, 32(7): 2085-2092. (in Chinese) doi: 10.3969/j.issn.1000-7598.2011.07.028
|
[4] |
冯世进, 高广运, 艾鸿涛, 等. 邻近地铁隧道的基坑群开挖变形分析[J]. 岩土工程学报, 2008, 30(增刊1): 112-117.
FENG Shijin, GAO Guangyun, AI Hongtao, et al. Deformation analysis of foundation pit group adjacent to subway tunnel[J]. Chinese Journal of Geotechnical Engineering, 2008, 30(S1): 112-117. (in Chinese)
|
[5] |
郑刚, 聂东清, 程雪松, 等. 基坑分级支护的模型试验研究[J]. 岩土工程学报, 2017, 39(5): 784-794. doi: 10.11779/CJGE201705002
ZHENG Gang, NIE Dongqing, CHENG Xuesong, et al. Experimental study on multi-bench retaining foundation pit[J]. Chinese Journal of Geotechnical Engineering, 2017, 39(5): 784-794. (in Chinese) doi: 10.11779/CJGE201705002
|
[6] |
LIAO S M, WEI S F, SHEN S L. Structural responses of existing metro stations to adjacent deep excavations in Suzhou, China[J]. Journal of Performance of Constructed Facilities, 2016, 30(4): 04015089. doi: 10.1061/(ASCE)CF.1943-5509.0000845
|
[7] |
陈仁朋, 刘书伦, 孟凡衍, 等. 软黏土地层基坑开挖对旁侧隧道影响离心模型试验研究[J]. 岩土工程学报, 2020, 42(6): 1132-1138. doi: 10.11779/CJGE202006018
CHEN Renpeng, LIU Shulun, MENG Fanyan, et al. Centrifuge modeling of excavation effects on a nearby tunnel in soft clay[J]. Chinese Journal of Geotechnical Engineering, 2020, 42(6): 1132-1138. (in Chinese) doi: 10.11779/CJGE202006018
|
[8] |
李航, 廖少明, 何君佐, 等. 软土基坑分步开挖卸荷时效及其对邻侧隧道影响[J]. 中南大学学报(自然科学版), 2023, 54(3): 1044-1053.
LI Hang, LIAO Shaoming, HE Junzuo, et al. Time effect of step-by-step excavation unloading in soft soils and its influence on adjacent tunnels[J]. Journal of Central South University (Science and Technology), 2023, 54(3): 1044-1053. (in Chinese)
|
[9] |
LI H, TANG Y J, LIAO S M, et al. Structural response and preservation of historic buildings adjacent to oversized deep excavation[J]. Journal of Performance of Constructed Facilities, 2021, 35(6): 04021095. doi: 10.1061/(ASCE)CF.1943-5509.0001676
|
[10] |
TAN Y, HUANG R Q, KANG Z J, et al. Covered semi-top-down excavation of subway station surrounded by closely spaced buildings in downtown Shanghai: building response[J]. Journal of Performance of Constructed Facilities, 2016, 30(6): 04016040. doi: 10.1061/(ASCE)CF.1943-5509.0000892
|
[11] |
徐中华, 王建华, 王卫东. 上海地区深基坑工程中地下连续墙的变形性状[J]. 土木工程学报, 2008, 41(8): 81-86.
XU Zhonghua, WANG Jianhua, WANG Weidong. Deformation behavior of diaphragm walls in deep excavations in Shanghai[J]. China Civil Engineering Journal, 2008, 41(8): 81-86. (in Chinese)
|
[12] |
廖少明, 魏仕锋, 谭勇, 等. 苏州地区大尺度深基坑变形性状实测分析[J]. 岩土工程学报, 2015, 37(3): 458-469. doi: 10.11779/CJGE201503009
LIAO Shaoming, WEI Shifeng, TAN Yong, et al. Field performance of large-scale deep excavations in Suzhou[J]. Chinese Journal of Geotechnical Engineering, 2015, 37(3): 458-469. (in Chinese) doi: 10.11779/CJGE201503009
|
[13] |
TAN Y, WANG D L. Characteristics of a large-scale deep foundation pit excavated by the central-island technique in Shanghai soft clay. Ⅱ: top-down construction of the peripheral rectangular pit[J]. Journal of Geotechnical and Geoenvironmental Engineering, 2013, 139(11): 1894-1910. doi: 10.1061/(ASCE)GT.1943-5606.0000929
|
[14] |
TAN Y, FAN D D, LU Y. Statistical analyses on a database of deep excavations in Shanghai soft clays in China from 1995–2018[J]. Practice Periodical on Structural Design and Construction, 2022, 27(1): 04021067. doi: 10.1061/(ASCE)SC.1943-5576.0000646
|
[15] |
郑刚, 曾超峰. 基坑开挖前潜水降水引起的地下连续墙侧移研究[J]. 岩土工程学报, 2013, 35(12): 2153-2163. http://cge.nhri.cn/article/id/15591
ZHENG Gang, ZENG Chaofeng. Lateral displacement of diaphragm wall by dewatering of phreatic water before excavation[J]. Chinese Journal of Geotechnical Engineering, 2013, 35(12): 2153-2163. (in Chinese) http://cge.nhri.cn/article/id/15591
|
[16] |
曾超峰, 郑刚, 薛秀丽. 大面积基坑开挖前预降水对支护墙变形的影响研究[J]. 岩土工程学报, 2017, 39(6): 1012-1021. doi: 10.11779/CJGE201706006
ZENG Chaofeng, ZHENG Gang, XUE Xiuli. Wall deflection induced by pre-excavation dewatering in large-scale excavations[J]. Chinese Journal of Geotechnical Engineering, 2017, 39(6): 1012-1021. (in Chinese) doi: 10.11779/CJGE201706006
|
[17] |
DG/TJ08-61—2018基坑工程技术标准[S]. 上海: 同济大学出版社, 2018.
DG/TJ08-61—2018 Technical Code for Excavation Engineering[S]. Shanghai: Tongji University Press: 2018. (in Chinese)
|
[18] |
OU C Y, CHIOU D C, WU T S. Three-dimensional finite element analysis of deep excavations[J]. Journal of Geotechnical Engineering, 1996, 122(5): 337-345. doi: 10.1061/(ASCE)0733-9410(1996)122:5(337)
|
[19] |
LEE F H, YONG K Y, QUAN K C N, et al. Effect of corners in strutted excavations: field monitoring and case histories[J]. Journal of Geotechnical and Geoenvironmental Engineering, 1998, 124(4): 339-349. doi: 10.1061/(ASCE)1090-0241(1998)124:4(339)
|
[20] |
FINNO R J, BLACKBURN J T, ROBOSKI J F. Three-dimensional effects for supported excavations in clay[J]. Journal of Geotechnical and Geoenvironmental Engineering, 2007, 133(1): 30-36. doi: 10.1061/(ASCE)1090-0241(2007)133:1(30)
|
[21] |
PECK. Deep excavation and tunnelling in soft ground[C]// ICSMFE Proc 7th Int Conf SMFE State of the Art Volume. Mexico: Balkema, 1969.
|
[22] |
KUNG G T, JUANG C H, HSIAO E C, et al. Simplified model for wall deflection and ground-surface settlement caused by braced excavation in clays[J]. Journal of Geotechnical and Geoenvironmental Engineering, 2007, 133(6): 731-747. doi: 10.1061/(ASCE)1090-0241(2007)133:6(731)
|
[23] |
TAN Y, WANG D L. Characteristics of a large-scale deep foundation pit excavated by the central-island technique in Shanghai soft clay. Ⅰ: bottom-up construction of the central cylindrical shaft[J]. Journal of Geotechnical and Geoenvironmental Engineering, 2013, 139(11): 1875-1893. doi: 10.1061/(ASCE)GT.1943-5606.0000928
|
[24] |
OU C Y, HSIEH P G, CHIOU D C. Characteristics of ground surface settlement during excavation[J]. Canadian Geotechnical Journal, 1993, 30(5): 758-767. doi: 10.1139/t93-068
|
[25] |
徐中华. 上海地区支护结构与主体地下结构相结合的深基坑变形性状研究[D]. 上海: 上海交通大学, 2007.
XU Zhonghua. Deformation Behavior of Deep Excavations Supported by Permanent Structure in Shanghai Soft Deposit[D]. Shanghai: Shanghai Jiao Tong University, 2007. (in Chinese)
|
[26] |
刘国彬, 侯学渊. 软土基坑隆起变形的残余应力分析法[J]. 地下工程与隧道, 1996(2): 2-7.
LIU Guobin, HOU Xueyuan. Residual stress analysis method for uplift deformation of soft soil foundation pit[J]. Undergrourd Engineering and Tunmels, 1996(2): 2-7. (in Chinese)
|
[27] |
HSIEH P G, OU C Y. Shape of ground surface settlement profiles caused by excavation[J]. Canadian Geotechnical Journal, 1998, 35(6): 1004-1017. doi: 10.1139/t98-056
|
[1] | LIU Hongwei, WANG Mengqi, ZHAN Liangtong, FENG Song, WU Tao. Method and apparatus for measuring in-situ gas diffusion coefficient and permeability coefficient of unsaturated soils[J]. Chinese Journal of Geotechnical Engineering, 2024, 46(5): 948-958. DOI: 10.11779/CJGE20221228 |
[2] | JI Yong-xin, ZHANG Wen-jie. Experimental study on diffusion of chloride ions in unsaturated soils[J]. Chinese Journal of Geotechnical Engineering, 2021, 43(9): 1755-1760. DOI: 10.11779/CJGE202109022 |
[3] | XU Fei, CAI Yue-bo, QIAN Wen-xun, WEI Hua, ZHUANG Hua-xia. Mechanism of cemented soil modified by aliphatic ionic soil stabilizer[J]. Chinese Journal of Geotechnical Engineering, 2019, 41(9): 1679-1687. DOI: 10.11779/CJGE201909012 |
[4] | HUANG Wei, LIU Qing-bing, XIANG Wei, ZHANG Yun-long, WANG Zhen-hua, DAO Minh Huan. Water adsorption characteristics and water retention model for montmorillonite modified by ionic soil stabilizer[J]. Chinese Journal of Geotechnical Engineering, 2019, 41(1): 121-130. DOI: 10.11779/CJGE201901013 |
[5] | ZHANG Wen-jie, GU Chen, LOU Xiao-hong. Measurement of hydraulic conductivity and diffusion coefficient of backfill for soil-bentonite cutoff wall under low consolidation pressure[J]. Chinese Journal of Geotechnical Engineering, 2017, 39(10): 1915-1921. DOI: 10.11779/CJGE201710021 |
[6] | HUANG Qing-fu, ZHAN Mei-li, SHENG Jin-chang, LUO Yu-long, ZHANG Xia. Numerical method to generate granular assembly with any desired relative density based on DEM[J]. Chinese Journal of Geotechnical Engineering, 2015, 37(3): 537-543. DOI: 10.11779/CJGE201503019 |
[7] | LIU Qing-bing, XIANG Wei, CUI De-shan. Effect of ionic soil stabilizer on bound water of expansive soils[J]. Chinese Journal of Geotechnical Engineering, 2012, 34(10): 1887-1895. |
[8] | LIU Qing-bing, XIANG Wei, CUI De-shan, CAO Li-jing. Mechanism of expansive soil improved by ionic soil stabilizer[J]. Chinese Journal of Geotechnical Engineering, 2011, 33(4): 648. |
[9] | Microcosmic mechanism of ion transport in charged clay soils[J]. Chinese Journal of Geotechnical Engineering, 2010, 32(11): 1794-1799. |
[10] | XI Yong, Hui, REN Jie. Laboratory determination of diffusion and distribution coefficients of contaminants in clay soil[J]. Chinese Journal of Geotechnical Engineering, 2006, 28(3): 397-402. |