• 全国中文核心期刊
  • 中国科技核心期刊
  • 美国工程索引(EI)收录期刊
  • Scopus数据库收录期刊
WANG Chunping, LIU Jianfeng, LIU Jian, WANG Lu, XUE Fujun. Influences of confining pressure and fracture inclination on mechanical behavior of granite[J]. Chinese Journal of Geotechnical Engineering, 2024, 46(3): 578-586. DOI: 10.11779/CJGE20230759
Citation: WANG Chunping, LIU Jianfeng, LIU Jian, WANG Lu, XUE Fujun. Influences of confining pressure and fracture inclination on mechanical behavior of granite[J]. Chinese Journal of Geotechnical Engineering, 2024, 46(3): 578-586. DOI: 10.11779/CJGE20230759

Influences of confining pressure and fracture inclination on mechanical behavior of granite

More Information
  • Received Date: August 09, 2023
  • Available Online: October 19, 2023
  • The mechanical behavior of host rock with fractures is crucial for the long-term stability and safety of a high-level radioactive waste geological disposal facility. To investigate the influences of confining pressure and fracture inclination on the mechanical behavior of granite host rock, the uniaxial compression and triaxial compression tests are conducted on the intact granite and granite with single fractures of different inclinations. The results show that within the confining pressure range of 0~10 MPa, the granite with fractures inclined at 30° and 60° experiences the failure of newly formed cracks that penetrate through the pre-existing fracture surfaces and the slip failure along the fracture surface, respectively. As the confining pressure increases, the granite with fractures inclined at 45° undergoes a transition from composite failure to failure through the fracture surfaces. It then transits back to a tilted "Z"-shaped composite failure under a confining pressure of 10 MPa. The presence of confining pressure constrains the deterioration of pre-existing fracture surfaces. The compressive strength and deformation development curves of low-angle fractured granite under triaxial compression conditions are similar to those of the intact granite, and the axial strains at the peak failure of these specimens are approximately 0.38%, 0.49%, 0.59% and 0.75% under confining pressures of 0, 2, 5, and 10 MPa, respectively. The compressive strength and axial strain at peak failure of specimens that experience slip failure are significantly lower than those of specimens that experience failure through the fracture surface, and the compressive strength shows a power-law relationship with the difference in fractal dimensions between the fracture surfaces before and after the tests.
  • [1]
    WANG J, CHEN L, SU R, et al. The Beishan underground research laboratory for geological disposal of high-level radioactive waste in China: Planning, site selection, site characterization and in situ tests[J]. Journal of Rock Mechanics and Geotechnical Engineering, 2018, 10: 411-435. doi: 10.1016/j.jrmge.2018.03.002
    [2]
    PETRUZALEK M, VILHELM J, RUDAJEV V, et al. Determination of the anisotropy of elastic waves monitored by a sparse sensor network[J]. International Journal of Rock Mechanics and Mining Sciences, 2013, 60(1): 208-216.
    [3]
    蒋明镜, 陈贺, 张宁, 等. 含双裂隙岩石裂纹演化机理的离散元数值分析[J]. 岩土力学, 2014, 35(11): 3259-3268, 3288. https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201411034.htm

    JIANG Mingjing, CHEN He, ZHANG Ning, et al. Distinct element numerical analysis of crack evolution in rocks containing pre-existing double flaw[J]. Rock and Soil Mechanics, 2014, 35(11): 3259-3268, 3288. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201411034.htm
    [4]
    王在泉, 张黎明, 孙辉. 含天然节理灰岩加、卸荷力学特性试验研究[J]. 岩石力学与工程学报, 2010, 29(增刊1): 3308-3313. https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX2010S1105.htm

    WANG Zaiquan, ZHANG Liming, SUN Hui. Experimental research on mechanical properties of limestone containing natural joints under loading and unloading conditions[J]. Chinese Journal of Rock Mechanics and Engineering, 2010, 29(S1): 3308-3313. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX2010S1105.htm
    [5]
    王强, 周扬一, 李元辉, 等. 基于声发射监测的含天然弱面辉绿岩变形和强度特性实验研究[J]. 岩石力学与工程学报, 2019, 38(增刊2): 3646-3653. https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX2019S2039.htm

    WANG Qiang, ZHOU Yangyi, LI Yuanhui, et al. Experimental study on deformation and strength characteristics of diabase containing natural weak plane by acoustic emission[J]. Chinese Journal of Rock Mechanics and Engineering, 2019, 38(S2): 3646-3653. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX2019S2039.htm
    [6]
    李银平, 王元汉, 陈龙珠, 等. 含预制裂纹大理岩的压剪试验分析[J]. 岩土工程学报, 2004, 26(1): 120-124. http://cge.nhri.cn/cn/article/id/11350

    LI Yinping, WANG Yuanhan, CHEN Longzhu, et al. Experimental research on pre-existing cracks in marble under compression[J]. Chinese Journal of Geotechnical Engineering, 2004, 26(1): 120-124. (in Chinese) http://cge.nhri.cn/cn/article/id/11350
    [7]
    LI Y P, CHEN L Z, WANG Y H. Experimental research on pre-cracked marble under compression[J]. International Journal of Solids and Structures, 2005, 42(9/10): 2505-2516.
    [8]
    任建喜, 杨更社, 葛修润. 裂隙花岗岩卸围压作用下损伤破坏机理CT检测[J]. 长安大学学报(自然科学版), 2002, 22(6): 46-49. https://www.cnki.com.cn/Article/CJFDTOTAL-XAGL200206012.htm

    REN Jianxi, YANG Gengshe, GE Xiurun. Real-time CT test of meso-damage evolution law of jointed granite on unloading confining pressure[J]. Journal of Chang'an University (Natural Science Edition), 2002, 22(6): 46-49. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-XAGL200206012.htm
    [9]
    李满, 刘先珊, 潘玉华, 等. 循环热冲击后裂隙砂岩力学特性试验研究[J]. 岩土力学, 2023, 44(5): 1260-1270. https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX202305002.htm

    LI Man, LIU Xianshan, PAN Yuhua, et al. Mechanical properties of fractured sandstone after cyclic thermal shock[J]. Rock and Soil Mechanics, 2023, 44(5): 1260-1270. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX202305002.htm
    [10]
    罗丹旎, 卢思航, 苏国韶, 等. 含预制单裂隙花岗岩的真三轴单面临空岩爆试验研究[J]. 岩土力学, 2023, 44(1): 75-87. https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX202301005.htm

    LUO Danni, LU Sihang, SU Guoshao, et al. Experimental study on rock burst of granite with prefabricated single crack under true-triaxial stress condition with a free face[J]. Rock and Soil Mechanics, 2023, 44(1): 75-87. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX202301005.htm
    [11]
    WONG R H C, LAW C M, CHAU K T, et al. Crack propagation from 3-D surface fractures in PMMA and marble specimens under uniaxial compression[J]. International Journal of Rock Mechanics and Mining Sciences, 2004, 41(3): 360-360. doi: 10.1016/j.ijrmms.2003.12.065
    [12]
    谢其泰, 郭俊志, 王建力, 等. 单轴压缩下含倾斜单裂纹砂岩试件裂纹扩展量测研究[J]. 岩土力学, 2011, 32(10): 2917-2921, 2928. https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201110006.htm

    HSIEH Chitai, KUO Chuhchih, WANG Cheinlee, et al. A study of crack propagation measurement on sandstone with a single inclined flaw under uniaxial compression[J]. Rock and Soil Mechanics, 2011, 32(10): 2917-2921, 2928. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201110006.htm
    [13]
    BARTON N R. A relationship between joint roughness and shear strength[C]//Proc International Symposium on Rock Fractured. Nancy France, 1971: 1-8.
    [14]
    SAYLES R S, TOMAS R R. The spatial representation of surface roughness by means of the structure functions, a practical alternative to correlation[J]. Wear, 1977, 42(1): 263-276.
    [15]
    BERRY M V, LEWIS Z V. On the Weierstrass-Mandelbrot fractal function[J]. Mathematical, Physical and Engineering Sciences, 1980, 370: 459-484.
    [16]
    MALINVERNO A. A simple method to estimate the fractal dimension of a self-affine series[J]. Geophysical Research Letters, 1990, 17(11): 1953-1956. doi: 10.1029/GL017i011p01953
    [17]
    MANDELBROT B B. The Fractal Geometry of Nature[M]. New York: W H Freeman, 1983.
    [18]
    谢和平, PARSISEAU W G. 岩石节理粗糙系数(JRC)的分形估计[J]. 中国科学(B辑), 1994(5): 524-530. https://www.cnki.com.cn/Article/CJFDTOTAL-JBXK199405011.htm

    XIE Heping, PARISEAU W G. Fractal estimation of the roughness coefficient of jointed rock mass (JRC)[J]. Science in China (Series B), 1994(5): 524-530. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-JBXK199405011.htm
    [19]
    ODLING N E. Natural fracture profiles, fractal dimension and joint roughness coefficients[J]. Rock Mechanics and Rock Engineering, 1994, 27(3): 135-153. doi: 10.1007/BF01020307
    [20]
    谢和平. 岩石节理的分形描述[J]. 岩土工程学报, 1995, 17(1): 18-23. http://cge.nhri.cn/cn/article/id/9831

    XIE He-ping. Fractal description of rock joints[J]. Chinese Journal of Geotechnical Engineering, 1995, 17(1): 18-23. (in Chinese) http://cge.nhri.cn/cn/article/id/9831
    [21]
    谢和平, 周宏伟. 基于分形理论的岩石节理力学行为研究[J]. 中国科学基金, 1998, 12(4): 247-252. https://www.cnki.com.cn/Article/CJFDTOTAL-ZKJJ199804003.htm

    XIE Heping, ZHOU Hongwei. Research on mechanical behaviors of rock joints based on fractal theory[J]. Bulletin of National Natural Science Foundation of China, 1998, 12(4): 247-252. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-ZKJJ199804003.htm
    [22]
    ZHOU H W, XIE H P, Direct estimation of the fractal dimensions of a fracture surface of rock[J]. Surface Review and Letters, 2003, 5: 751-762.
  • Cited by

    Periodical cited type(1)

    1. 龙潇,孙锐,郑桐. 基于卷积神经网络的液化预测模型及可解释性分析. 岩土力学. 2024(09): 2741-2753 .

    Other cited types(0)

Catalog

    Article views (547) PDF downloads (213) Cited by(1)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return