• 全国中文核心期刊
  • 中国科技核心期刊
  • 美国工程索引(EI)收录期刊
  • Scopus数据库收录期刊
WANG Jingzhou, MA Gang, ZHAO Tingting, ZHANG Wenyu, HU Jinfang, ZHOU Wei. FDEM simulation for granular materials based on exact scaling and coarse granulation[J]. Chinese Journal of Geotechnical Engineering, 2024, 46(11): 2371-2379. DOI: 10.11779/CJGE20230754
Citation: WANG Jingzhou, MA Gang, ZHAO Tingting, ZHANG Wenyu, HU Jinfang, ZHOU Wei. FDEM simulation for granular materials based on exact scaling and coarse granulation[J]. Chinese Journal of Geotechnical Engineering, 2024, 46(11): 2371-2379. DOI: 10.11779/CJGE20230754

FDEM simulation for granular materials based on exact scaling and coarse granulation

More Information
  • Received Date: August 06, 2023
  • Available Online: March 24, 2024
  • The particle materials are characterized by discontinuity and dispersion, so they face great computational pressure in numerical simulation. The exact scaling criterion and coarse-grained method are introduced into the combined finite-discrete element method (FDEM) to provide a solution for accelerating the numerical simulation of granular materials based on the FDEM. Based on the theories of exact scaling and coarse granulation, the exact scaling criteria for the FDEM are derived. On this basis, the numerical triaxial shear tests for equal diameter particle system and binary particle system are carried out respectively. The test results show that without the introduction of the exact scaling criteria, the mechanical response characteristics of the coarse-grained model will change, resulting in distortion, and the parameters of the coarse-grained model need to be corrected. After the introduction of the exact scaling criteria, the mechanical response characteristics of the coarse-grained model are corrected. The test results demonstrate the effectiveness of introducing the exact scaling criteria and coarse granulation method into the FDEM. It can greatly improve the computational efficiency of numerical simulation of granular materials using the FDEM under the similar conditions to the original particle system. Based on the numerical test results, the macroscopic stress deformation and mesoscopic contact force are correlated, and the micromechanical mechanism of the exact scaling and coarse-grained methods is revealed.
  • [1]
    吴杨, 容浩俊, 王金莲, 等. 颗粒形状和中主应力对砂土力学特性耦合影响的真三轴试验研究[J]. 岩石力学与工程学报, 2023, 42(2): 497-507.

    WU Yang, RONG Haojun, WANG Jinlian, et al. A true triaxial experimental study on the coupled effect of particle shape and intermediate principal stress on the mechanical properties of sand[J]. Chinese Journal of Rock Mechanics and Engineering, 2023, 42(2): 497-507. (in Chinese)
    [2]
    康馨, 陈植欣, 雷航, 等. 基于3D打印研究颗粒形状对砂土宏观力学性质的影响[J]. 岩土工程学报, 2020, 42(9): 1765-1772. doi: 10.11779/CJGE202009022

    KANG Xin, CHEN Zhixin, LEI Hang, et al. Effects of particle shape on mechanical performance of sand with 3D printed soil analog[J]. Chinese Journal of Geotechnical Engineering, 2020, 42(9): 1765-1772. (in Chinese) doi: 10.11779/CJGE202009022
    [3]
    GUO Y, CURTIS J S. Discrete element method simulations for complex granular flows[J]. Annual Review of Fluid Mechanics, 2015, 47: 21-46. . doi: 10.1146/annurev-fluid-010814-014644
    [4]
    HUANG X, O'SULLIVAN C, HANLEY K J, et al. Discrete-element method analysis of the state parameter[J]. Géotechnique, 2014, 64(12): 954-965. doi: 10.1680/geot.14.P.013
    [5]
    LU M, MCDOWELL G R. The importance of modelling ballast particle shape in the discrete element method[J]. Granular Matter, 2007, 9(1): 69-80.
    [6]
    COETZEE C J. Calibration of the discrete element method and the effect of particle shape[J]. Powder Technology, 2016, 297: 50-70. doi: 10.1016/j.powtec.2016.04.003
    [7]
    徐琨, 周伟, 马刚, 等. 基于离散元法的颗粒破碎模拟研究进展[J]. 岩土工程学报, 2018, 40(5): 880-889. doi: 10.11779/CJGE201805013

    XU Kun, ZHOU Wei, MA Gang, et al. Review of particle breakage simulation based on DEM[J]. Chinese Journal of Geotechnical Engineering, 2018, 40(5): 880-889. (in Chinese) doi: 10.11779/CJGE201805013
    [8]
    MCDOWELL G R, HARIRECHE O. Discrete element modelling of soil particle fracture[J]. Géotechnique, 2002, 52(2): 131-135. doi: 10.1680/geot.2002.52.2.131
    [9]
    DE BONO J, MCDOWELL G. Particle breakage criteria in discrete-element modelling[J]. Géotechnique, 2016, 66(12): 1014-1027. doi: 10.1680/jgeot.15.P.280
    [10]
    ZHOU W, WANG D, MA G, et al. Discrete element modeling of particle breakage considering different fragment replacement modes[J]. Powder Technology, 2020, 360: 312-323. doi: 10.1016/j.powtec.2019.10.002
    [11]
    肖宇轩, 马刚, 陆希, 等. 堆石颗粒在复杂约束模式的破碎特性[J]. 浙江大学学报(工学版), 2022, 56(8): 1514-1522, 1559.

    XIAO Yuxuan, MA Gang, LU Xi, et al. Breakage behaviour of rockfill particles in complicated constraint patterns[J]. Journal of Zhejiang University (Engineering Science), 2022, 56(8): 1514-1522, 1559. (in Chinese)
    [12]
    周剑, 马刚, 周伟, 等. 基于FDEM的岩石颗粒破碎后碎片形状的统计分析[J]. 浙江大学学报(工学版), 2021, 55(2): 348-357.

    ZHOU Jian, MA Gang, ZHOU Wei, et al. Statistical analysis of fragment shape of rock grain after crushing based on FDEM[J]. Journal of Zhejiang University (Engineering Science), 2021, 55(2): 348-357. (in Chinese)
    [13]
    邹宇雄, 马刚, 李易奥, 等. 抗转动对颗粒材料组构特性的影响研究[J]. 岩土力学, 2020, 41(8): 2829-2838.

    ZOU Yuxiong, MA Gang, LI Yiao, et al. Impact of rotation resistance on fabric of granular materials[J]. Rock and Soil Mechanics, 2020, 41(8): 2829-2838. (in Chinese)
    [14]
    邹宇雄, 周伟, 陈远, 等. 颗粒形状对岩土颗粒材料传力特性的影响机制[J]. 水力发电学报, 2020, 39(5): 17-26.

    ZOU Yuxiong, ZHOU Wei, CHEN Yuan, et al. Mechanism of particle shape affecting force transfer properties of granular geo-materials[J]. Journal of Hydroelectric Engineering, 2020, 39(5): 17-26. (in Chinese)
    [15]
    MA G, ZHOU W, CHANG X L. Modeling the particle breakage of rockfill materials with the cohesive crack model[J]. Computers and Geotechnics, 2014, 61: 132-143. doi: 10.1016/j.compgeo.2014.05.006
    [16]
    MA G, ZHOU W, CHANG X, et al. Formation of shear bands in crushable and irregularly shaped granular materials and the associated microstructural evolution[J]. Powder Technology, 2016, 301: 118-130. doi: 10.1016/j.powtec.2016.05.068
    [17]
    MA G, ZHOU W, REGUEIRO R A, et al. Modeling the fragmentation of rock grains using computed tomography and combined FDEM[J]. Powder Technology, 2017, 308: 388-397. doi: 10.1016/j.powtec.2016.11.046
    [18]
    LIU Q S, WANG W Q, MA H. Parallelized combined finite-discrete element (FDEM) procedure using multi-GPU with CUDA[J]. International Journal for Numerical and Analytical Methods in Geomechanics, 2020, 44(2): 208-238. doi: 10.1002/nag.3011
    [19]
    LISJAK A, MAHABADI O K, HE L, et al. Acceleration of a 2D/3D finite-discrete element code for geomechanical simulations using General Purpose GPU computing[J]. Computers and Geotechnics, 2018, 100: 84-96. doi: 10.1016/j.compgeo.2018.04.011
    [20]
    程宏旸, WEINHART T. 关于采用粗粒化提高颗粒材料多尺度模拟守恒特性的研究[J]. 计算力学学报, 2022, 39(3): 373-380.

    CHENG Hongyang, WEINHART T. On the conservation properties of CG-enriched concurrent coupling methods for multi-scale modeling of granular materials[J]. Chinese Journal of Computational Mechanics, 2022, 39(3): 373-380. (in Chinese)
    [21]
    赵婷婷, 冯云田. 大规模颗粒系统的精确缩尺和粗粒化离散元方法[J]. 计算力学学报, 2022, 39(3): 365-372.

    ZHAO Tingting, FENG Yuntian. Exact scaling laws and coarse-grained discrete element modelling of large scale granular systems[J]. Chinese Journal of Computational Mechanics, 2022, 39(3): 365-372. (in Chinese)
    [22]
    季顺迎. 颗粒材料计算力学专辑序[J]. 计算力学学报, 2022, 39(3): 263-264.

    JI Shunying. Preface to computational mechanics of granular materials[J]. Chinese Journal of Computational Mechanics, 2022, 39(3): 263-264. (in Chinese)
    [23]
    谢亦朋, 张聪, 阳军生, 等. 基于局部粗粒化离散元的冰水堆积体隧道围岩破坏特征与加固措施研究[J]. 岩石力学与工程学报, 2021, 40(3): 576-589.

    XIE Yipeng, ZHANG Cong, YANG Junsheng, et al. Study on failure characteristics and reinforcement measures of surrounding rock of glacial deposit tunnels based on coarse-grained DEM[J]. Chinese Journal of Rock Mechanics and Engineering, 2021, 40(3): 576-589. (in Chinese)
    [24]
    易颖, 周伟, 马刚, 等. 基于精确缩尺的颗粒材料流变研究[J]. 岩土力学, 2016, 37(6): 1799-1808.

    YI Ying, ZHOU Wei, MA Gang, et al. Study of rheological behaviors of granular materials based on exact scaling laws[J]. Rock and Soil Mechanics, 2016, 37(6): 1799-1808. (in Chinese)
    [25]
    FENG Y T, OWEN D R J. Discrete element modelling of large scale particle systems—Ⅰ: exact scaling laws[J]. Computational Particle Mechanics, 2014, 1(2): 159-168. doi: 10.1007/s40571-014-0010-y
    [26]
    MA G, ZHOU W, CHANG X L, et al. Combined FEM/DEM modeling of triaxial compression tests for rockfills with polyhedral particles[J]. International Journal of Geomechanics, 2014, 14(4): 04014014. doi: 10.1061/(ASCE)GM.1943-5622.0000372
    [27]
    AZÉMA E, RADJAI F, SAUSSINE G. Quasistatic rheology, force transmission and fabric properties of a packing of irregular polyhedral particles[J]. Mechanics of Materials, 2009, 41(6): 729-741. doi: 10.1016/j.mechmat.2009.01.021
  • Related Articles

    [1]LIU Hongwei, WANG Mengqi, ZHAN Liangtong, FENG Song, WU Tao. Method and apparatus for measuring in-situ gas diffusion coefficient and permeability coefficient of unsaturated soils[J]. Chinese Journal of Geotechnical Engineering, 2024, 46(5): 948-958. DOI: 10.11779/CJGE20221228
    [2]JI Yong-xin, ZHANG Wen-jie. Experimental study on diffusion of chloride ions in unsaturated soils[J]. Chinese Journal of Geotechnical Engineering, 2021, 43(9): 1755-1760. DOI: 10.11779/CJGE202109022
    [3]XU Fei, CAI Yue-bo, QIAN Wen-xun, WEI Hua, ZHUANG Hua-xia. Mechanism of cemented soil modified by aliphatic ionic soil stabilizer[J]. Chinese Journal of Geotechnical Engineering, 2019, 41(9): 1679-1687. DOI: 10.11779/CJGE201909012
    [4]HUANG Wei, LIU Qing-bing, XIANG Wei, ZHANG Yun-long, WANG Zhen-hua, DAO Minh Huan. Water adsorption characteristics and water retention model for montmorillonite modified by ionic soil stabilizer[J]. Chinese Journal of Geotechnical Engineering, 2019, 41(1): 121-130. DOI: 10.11779/CJGE201901013
    [5]ZHANG Wen-jie, GU Chen, LOU Xiao-hong. Measurement of hydraulic conductivity and diffusion coefficient of backfill for soil-bentonite cutoff wall under low consolidation pressure[J]. Chinese Journal of Geotechnical Engineering, 2017, 39(10): 1915-1921. DOI: 10.11779/CJGE201710021
    [6]HUANG Qing-fu, ZHAN Mei-li, SHENG Jin-chang, LUO Yu-long, ZHANG Xia. Numerical method to generate granular assembly with any desired relative density based on DEM[J]. Chinese Journal of Geotechnical Engineering, 2015, 37(3): 537-543. DOI: 10.11779/CJGE201503019
    [7]LIU Qing-bing, XIANG Wei, CUI De-shan. Effect of ionic soil stabilizer on bound water of expansive soils[J]. Chinese Journal of Geotechnical Engineering, 2012, 34(10): 1887-1895.
    [8]LIU Qing-bing, XIANG Wei, CUI De-shan, CAO Li-jing. Mechanism of expansive soil improved by ionic soil stabilizer[J]. Chinese Journal of Geotechnical Engineering, 2011, 33(4): 648.
    [9]Microcosmic mechanism of ion transport in charged clay soils[J]. Chinese Journal of Geotechnical Engineering, 2010, 32(11): 1794-1799.
    [10]XI Yong, Hui, REN Jie. Laboratory determination of diffusion and distribution coefficients of contaminants in clay soil[J]. Chinese Journal of Geotechnical Engineering, 2006, 28(3): 397-402.

Catalog

    Article views PDF downloads Cited by()
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return