• 全国中文核心期刊
  • 中国科技核心期刊
  • 美国工程索引(EI)收录期刊
  • Scopus数据库收录期刊
YANG Feng, GAO Yikang, QIN Aohan, SONG Zhihui, ZHAO Lianheng. Failure analysis of tunnel face influenced by overload and longitudinal slope[J]. Chinese Journal of Geotechnical Engineering, 2024, 46(11): 2323-2332. DOI: 10.11779/CJGE20230733
Citation: YANG Feng, GAO Yikang, QIN Aohan, SONG Zhihui, ZHAO Lianheng. Failure analysis of tunnel face influenced by overload and longitudinal slope[J]. Chinese Journal of Geotechnical Engineering, 2024, 46(11): 2323-2332. DOI: 10.11779/CJGE20230733

Failure analysis of tunnel face influenced by overload and longitudinal slope

More Information
  • Received Date: July 31, 2023
  • Available Online: April 23, 2024
  • Aiming at the stability of excavation face of tunnels under the influence of surface overload and longitudinal slope, an initial triangular mesh updating strategy derived from the structural failure mechanism is proposed. The computation is conducted by using the upper bound method with the rigid translatory moving elements (UB-RTME) with nonlinear programming to generate stability charts for the load factor σs/c and obtain the slip line failure modes. The results show that the range affected by the failure modes and the major failure domain are given by both the UB-RTME slip line mesh and the Optum G2 adaptive encryption mesh. The range of failure area is determined by the effective discontinuities and element velocity characterized by the UB-RTME. The quantitative data of the failure area S/D2 and the relationship between the slip line failure modes and the influencing factors are provided. The load factor σs/c decreases significantly with the increase of the longitudinal slope angle θ, increases with the increasing buried depth ratio C/D. It decreases with the increase of the gravity coefficient γD/c while increases nonlinearly with the increase in the internal friction angle ϕ. For the case with large values of C/D and ϕ, the mesh density will significantly affect the accuracy of the σs/c numerical solution obtained by the UB-RTME operation. With the increase of the mesh density, the accuracy of the calculated results of σs/c is significantly improved, and the slip line reflecting the failure characteristics becomes smoother.
  • [1]
    严松宏, 李国良. 隧道与地下工程荷载计算的研究现状[J]. 兰州交通大学学报, 2020, 39(2): 1-7. doi: 10.3969/j.issn.1001-4373.2020.02.001

    YAN Songhong, LI Guoliang. Research status of the load calculation of tunnel and underground engineering[J]. Journal of Lanzhou Jiaotong University, 2020, 39(2): 1-7. (in Chinese) doi: 10.3969/j.issn.1001-4373.2020.02.001
    [2]
    李修磊, 李金凤, 杨超. 黏土地层浅埋盾构隧道开挖面三维稳定性上限分析[J]. 铁道学报, 2021, 43(4): 166-174. doi: 10.3969/j.issn.1001-8360.2021.04.021

    LI Xiulei, LI Jinfeng, YANG Chao. Upper-bound solutions for three-dimensional excavation face stability of shallow shield tunnel in cohesive-frictional soils[J]. Journal of the China Railway Society, 2021, 43(4): 166-174. (in Chinese) doi: 10.3969/j.issn.1001-8360.2021.04.021
    [3]
    张明告, 周顺华, 黄大维, 等. 地表超载对地铁盾构隧道的影响分析[J]. 岩土力学, 2016, 37(8): 2271-2278.

    ZHANG Minggao, ZHOU Shunhua, HUANG Dawei, et al. Analysis of influence of surface surcharge on subway shield tunnel under[J]. Rock and Soil Mechanics, 2016, 37(8): 2271-2278. (in Chinese)
    [4]
    黄大维, 周顺华, 冯青松, 等. 地表均布超载作用下盾构隧道上覆土层竖向土压力转移分析[J]. 岩土力学, 2019, 40(6): 2213-2220.

    HUANG Dawei, ZHOU Shunhua, FENG Qingsong, et al. Analysis for vertical earth pressure transference on overlaying soils of shield tunnel under uniform surface surcharge[J]. Rock and Soil Mechanics, 2019, 40(6): 2213-2220. (in Chinese)
    [5]
    曾明生, 王文法, 康海波, 等. 基于不同破坏模式的盾构隧道掌子面支护力上限分析[J]. 铁道科学与工程学报, 2022, 19(8): 2360-2368.

    ZENG Mingsheng, WANG Wenfa, KANG Haibo, et al. Upper limit analysis of support force on shield tunnel face based on different failure modes[J]. Journal of Railway Science and Engineering, 2022, 19(8): 2360-2368. (in Chinese)
    [6]
    HUANG M S, SONG C X. Upper-bound stability analysis of a plane strain heading in non-homogeneous clay[J]. Tunnelling and Underground Space Technology, 2013, 38: 213-223. doi: 10.1016/j.tust.2013.07.012
    [7]
    黄茂松, 宋春霞, 王浩然. 基于上限定理的软土隧道开挖面稳定性分析[J]. 防灾减灾工程学报, 2014, 34(3): 330-335.

    HUANG Maosong, SONG Chunxia, WANG Haoran. Upper bound limit analysis for face stability of shield tunnel[J]. Journal of Disaster Prevention and Mitigation Engineering, 2014, 34(3): 330-335. (in Chinese)
    [8]
    黄茂松, 宋春霞, 吕玺琳. 非均质黏土地基隧道环向开挖面稳定上限分析[J]. 岩土工程学报, 2013, 35(8): 1504-1512. http://cge.nhri.cn/article/id/15259

    HUANG Maosong, SONG Chunxia, LÜ Xilin. Upper bound analysis for stability of a circular tunnel in heterogeneous clay[J]. Chinese Journal of Geotechnical Engineering, 2013, 35(8): 1504-1512. (in Chinese) http://cge.nhri.cn/article/id/15259
    [9]
    SURAPARB K, BOONCHAI U. Design equation for stability of a circular tunnel in anisotropic and heterogeneous clay[J]. Underground Space, 2022, 7(1): 76-93. doi: 10.1016/j.undsp.2021.05.003
    [10]
    阳军生, 张箭, 杨峰. 浅埋隧道掌子面稳定性二维自适应上限有限元分析[J]. 岩土力学, 2015, 36(1): 257-264.

    YANG Junsheng, ZHANG Jian, YANG Feng. Stability analysis of shallow tunnel face using two-dimensional finite element upper bound solution with mesh adaptation[J]. Rock and Soil Mechanics, 2015, 36(1): 257-264. (in Chinese)
    [11]
    YANG F, ZHANG J, YANG J S, et al. Stability analysis of unlined elliptical tunnel using finite element upper-bound method with rigid translatory moving elements[J]. Tunnelling and Underground Space Technology Incorporating Trenchless Technology Research, 2015, 50: 13-22.
    [12]
    YANG F, ZHANG J, ZHAO L H, et al. Upper-bound finite element analysis of stability of tunnel face subjected to surcharge loading in cohesive-frictional soil[J]. KSCE Journal of Civil Engineering, 2016, 20(6): 2270-2279. doi: 10.1007/s12205-015-0067-z
    [13]
    孙雁军, 阳军生, 罗静静, 等. 隧道工作面稳定性与滑移线网破坏模式研究[J]. 岩土工程学报, 2019, 41(7): 1374-1380. doi: 10.11779/CJGE201907024

    SUN Yanjun, YANG Junsheng, LUO Jingjing, et al. Stability and mesh-like collapse mechanism of tunnel face[J]. Chinese Journal of Geotechnical Engineering, 2019, 41(7): 1374-1380. (in Chinese) doi: 10.11779/CJGE201907024
    [14]
    杨峰, 何诗华, 吴遥杰, 等. 非均质黏土地层隧道开挖面稳定运动单元上限有限元分析[J]. 岩土力学, 2020, 41(4): 1412-1419, 1436.

    YANG Feng, HE Shihua, WU Yaojie, et al. Tunnel face stability analysis by the upper-bound finite element method with rigid translatory moving element in heterogeneous clay[J]. Rock and Soil Mechanics, 2020, 41(4): 1412-1419, 1436. (in Chinese)
    [15]
    WENG X L, SUN Y F, YAN B H, et al. Centrifuge testing and numerical modeling of tunnel face stability considering longitudinal slope angle and steady state seepage in soft clay[J]. Tunnelling and Underground Space Technology, 2020, 101: 103406. doi: 10.1016/j.tust.2020.103406
    [16]
    CHENG C, JIA P J, ZHAO W, et al. Experimental and analytical study of shield tunnel face in dense sand strata considering different longitudinal inclination[J]. Tunnelling and Underground Space Technology, 2021, 113: 103950. doi: 10.1016/j.tust.2021.103950
    [17]
    马辉, 王飞, 刘泽挂, 等. 深埋特长大坡度斜井变形规律与影响因素分析[J]. 地下空间与工程学报, 2020, 16(增刊2): 950-956.

    MA Hui, WANG Fei, LIU Zegua, et al. Analysis of deformation law and influencing factors of deep-buried extra-long inclined shaft with large slope[J]. Chinese Journal of Underground Space and Engineering, 2020, 16(S2): 950-956. (in Chinese)
    [18]
    SHI X M, LIU B G, TANNANT D, et al. Influence of consolidation settlement on the stability of inclined TBM tunnels in a coal mine[J]. Tunnelling and Underground Space Technology, 2017, 69: 64-71. doi: 10.1016/j.tust.2017.06.013
    [19]
    雷明锋, 彭立敏, 施成华, 等. 迎坡条件下盾构隧道开挖面极限支护力计算与分析[J]. 岩土工程学报, 2010, 32(3): 488-492. http://cge.nhri.cn/article/id/12413

    LEI Mingfeng, PENG Limin, SHI Chenghua, et al. Calculation and analysis of limit support force of shield tunnel excavation face under facing-slope conditions[J]. Chinese Journal of Geotechnical Engineering, 2010, 32(3): 488-492. (in Chinese) http://cge.nhri.cn/article/id/12413
    [20]
    周峻, 杨子松, 彭芳乐. 上坡条件下盾构开挖面极限支护压力研究[J]. 地下空间与工程学报, 2011, 7(5): 914-918. doi: 10.3969/j.issn.1673-0836.2011.05.016

    ZHOU Jun, YANG Zisong, PENG Fangle. A study on the support pressure limit of the excavation face of shield tunnel under upslope conditions[J]. Chinese Journal of Underground Space and Engineering, 2011, 7(5): 914-918. (in Chinese) doi: 10.3969/j.issn.1673-0836.2011.05.016
    [21]
    赵智涛, 曹伍富, 王霆. 隧道爬坡开挖与水平开挖掌子面稳定性对比分析[J]. 现代隧道技术, 2018, 55(6): 94-100.

    ZHAO Zhitao, CAO Wufu, WANG Ting. Contrastive analysis of working face stability in cases of climbing excavation and horizontal excavation[J]. Modern Tunnelling Technology, 2018, 55(6): 94-100. (in Chinese)
    [22]
    ZHAO L H, LI D J, LI L, et al. Three-dimensional stability analysis of a longitudinally inclined shallow tunnel face[J]. Computers and Geotechnics, 2017, 87: 32-48. doi: 10.1016/j.compgeo.2017.01.015
    [23]
    程诚, 赵文, 王迎超, 等. 密砂地层盾构隧道纵坡开挖面稳定性理论分析[J]. 中国公路学报, 2023, 36(4): 157-168. doi: 10.3969/j.issn.1001-7372.2023.04.014

    CHENG Cheng, ZHAO Wen, WANG Yingchao, et al. Theoretical analysis of longitudinally-inclined shield tunnel face stability in dense sand stratum[J]. China Journal of Highway and Transport, 2023, 36(4): 157-168. (in Chinese) doi: 10.3969/j.issn.1001-7372.2023.04.014
    [24]
    张箭, 戚瑞宇, 宗晶瑶, 等. 盾构隧道环向开挖面破坏机制及剪胀效应研究[J]. 岩土力学, 2022, 43(7): 1833-1844.

    ZHANG Jian, QI Ruiyu, ZONG Jingyao, et al. Failure mechanism of shield tunnel circumferential excavation face and the influence of the dilatancy effect on the tunnel stability[J]. Rock and Soil Mechanics, 2022, 43(7): 1833-1844. (in Chinese)
  • Related Articles

    [1]LIU Hongwei, WANG Mengqi, ZHAN Liangtong, FENG Song, WU Tao. Method and apparatus for measuring in-situ gas diffusion coefficient and permeability coefficient of unsaturated soils[J]. Chinese Journal of Geotechnical Engineering, 2024, 46(5): 948-958. DOI: 10.11779/CJGE20221228
    [2]JI Yong-xin, ZHANG Wen-jie. Experimental study on diffusion of chloride ions in unsaturated soils[J]. Chinese Journal of Geotechnical Engineering, 2021, 43(9): 1755-1760. DOI: 10.11779/CJGE202109022
    [3]XU Fei, CAI Yue-bo, QIAN Wen-xun, WEI Hua, ZHUANG Hua-xia. Mechanism of cemented soil modified by aliphatic ionic soil stabilizer[J]. Chinese Journal of Geotechnical Engineering, 2019, 41(9): 1679-1687. DOI: 10.11779/CJGE201909012
    [4]HUANG Wei, LIU Qing-bing, XIANG Wei, ZHANG Yun-long, WANG Zhen-hua, DAO Minh Huan. Water adsorption characteristics and water retention model for montmorillonite modified by ionic soil stabilizer[J]. Chinese Journal of Geotechnical Engineering, 2019, 41(1): 121-130. DOI: 10.11779/CJGE201901013
    [5]ZHANG Wen-jie, GU Chen, LOU Xiao-hong. Measurement of hydraulic conductivity and diffusion coefficient of backfill for soil-bentonite cutoff wall under low consolidation pressure[J]. Chinese Journal of Geotechnical Engineering, 2017, 39(10): 1915-1921. DOI: 10.11779/CJGE201710021
    [6]HUANG Qing-fu, ZHAN Mei-li, SHENG Jin-chang, LUO Yu-long, ZHANG Xia. Numerical method to generate granular assembly with any desired relative density based on DEM[J]. Chinese Journal of Geotechnical Engineering, 2015, 37(3): 537-543. DOI: 10.11779/CJGE201503019
    [7]LIU Qing-bing, XIANG Wei, CUI De-shan. Effect of ionic soil stabilizer on bound water of expansive soils[J]. Chinese Journal of Geotechnical Engineering, 2012, 34(10): 1887-1895.
    [8]LIU Qing-bing, XIANG Wei, CUI De-shan, CAO Li-jing. Mechanism of expansive soil improved by ionic soil stabilizer[J]. Chinese Journal of Geotechnical Engineering, 2011, 33(4): 648.
    [9]Microcosmic mechanism of ion transport in charged clay soils[J]. Chinese Journal of Geotechnical Engineering, 2010, 32(11): 1794-1799.
    [10]XI Yong, Hui, REN Jie. Laboratory determination of diffusion and distribution coefficients of contaminants in clay soil[J]. Chinese Journal of Geotechnical Engineering, 2006, 28(3): 397-402.

Catalog

    Article views PDF downloads Cited by()
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return