Citation: | XIAO Xing, JI Dongwei, WU Qi, LI Yuanxi, CHEN Guoxing. Experimental investigation on cyclic failure criteria for marine clay based on energy method[J]. Chinese Journal of Geotechnical Engineering, 2024, 46(11): 2361-2370. DOI: 10.11779/CJGE20230730 |
[1] |
杨爱武, 王亚成. 不同频率影响下结构性软黏土动力特性试验研究[J]. 岩土工程学报, 2017, 39(增刊2): 184-188. doi: 10.11779/CJGE2017S2045
YANG Aiwu, WANG Yacheng. Experimental study on dynamic characteristics of structural soft clay under different frequencies[J]. Chinese Journal of Geotechnical Engineering, 2017, 39(S2): 184-188. (in Chinese) doi: 10.11779/CJGE2017S2045
|
[2] |
陈国兴, 杨文保, 岳文泽, 等. 金塘海峡海洋土动剪切模量与阻尼比特性研究[J]. 防灾减灾工程学报, 2020, 40(1): 1-8.
CHEN Guoxing, YANG Wenbao, YUE Wenze, et al. Experimental studies on the dynamic shear modulus and damping ratio characteristics of marine soils in the Jintang strait[J]. Journal of Disaster Prevention and Mitigation Engineering, 2020, 40(1): 1-8. (in Chinese)
|
[3] |
袁宇, 刘润, 付登锋, 等. 结构性海洋黏土损伤模型的二次开发及应用[J]. 岩土力学, 2022, 43(7): 1989-2002.
YUAN Yu, LIU Run, FU Dengfeng, et al. Secondary development and application of structural marine clay damage model[J]. Rock and Soil Mechanics, 2022, 43(7): 1989-2002. (in Chinese)
|
[4] |
ANDERSEN K H. Bearing capacity under cyclic loading offshore, along the coast, and on land[J]. Canadian Geotechnical Journal, 2009, 46(5): 513-535. doi: 10.1139/T09-003
|
[5] |
WICHTMANN T, ANDERSEN K H, SJURSEN M A, et al. Cyclic tests on high-quality undisturbed block samples of soft marine Norwegian clay[J]. Canadian Geotechnical Journal, 2013, 50(4): 400-412. doi: 10.1139/cgj-2011-0390
|
[6] |
ANDERSEN K H. Cyclic soil parameters for offshore foundation design[C]// Proceeding of International Symposium on Frontiers in Offshore Geotechnics: ISFOG, Oslo, 2015.
|
[7] |
JIN H X, GUO L, SUN H L, et al. Energy-based evaluation of undrained cyclic behavior of marine soft clay under multidirectional simple shear stress paths[J]. Acta Geotechnica, 2023, 18(6): 2883-2898. doi: 10.1007/s11440-022-01765-5
|
[8] |
陈国兴, 吴琪, 孙苏豫, 等. 土壤地震液化评价方法研究进展[J]. 防灾减灾工程学报, 2021, 41(4): 677-709, 733.
CHEN Guoxing, WU Qi, SUN Suyu, et al. Advances in soil liquefaction triggering procedures during earthquakes: retrospect and prospect[J]. Journal of Disaster Prevention and Mitigation Engineering, 2021, 41(4): 677-709, 733. (in Chinese)
|
[9] |
SEED H B, LEE K L. Liquefaction of saturated sands during cyclic loading[J]. Journal of the Soil Mechanics and Foundations Division, 1966, 92(6): 105-134. doi: 10.1061/JSFEAQ.0000913
|
[10] |
CHEN G X, MA W J, QIN Y, et al. Liquefaction susceptibility of saturated coral sand subjected to various patterns of principal stress rotation[J]. Journal of Geotechnical and Geoenvironmental Engineering, 2021, 147: 04021093. doi: 10.1061/(ASCE)GT.1943-5606.0002590
|
[11] |
CHEN G X, WU Q, ZHOU Z L, et al. Undrained anisotropy and cyclic resistance of saturated silt subjected to various patterns of principal stress rotation[J]. Géotechnique, 2020, 70(4): 317-331. doi: 10.1680/jgeot.18.P.180
|
[12] |
杜修力, 路德春. 土动力学与岩土地震工程研究进展[J]. 岩土力学, 2011, 32(增刊2): 10-20.
DU Xiuli, LU Dechun. Research progress of soil dynamics and geotechnical earthquake engineering[J]. Rock and Soil Mechanics, 2011, 32(S2): 10-20. (in Chinese)
|
[13] |
PICARELLI L, DI MAIO C, TOMMASI P, et al. Pore water pressure measuring and modeling in stiff clays and clayey flysch deposits: a challenging problem[J]. Engineering Geology, 2022, 296: 106442. doi: 10.1016/j.enggeo.2021.106442
|
[14] |
XIAO X, JI D W, HANG T Z, et al. Cyclic threshold shear strain for pore water pressure generation and stiffness degradation in marine clays at Yangtze estuary[J]. Frontiers in Marine Science, 2023, 10: 1184225. doi: 10.3389/fmars.2023.1184225
|
[15] |
JIN H X, GUO L, SUN H L, et al. Undrained cyclic shear strength and stiffness degradation of overconsolidated soft marine clay in simple shear tests[J]. Ocean Engineering, 2022, 262: 112270. doi: 10.1016/j.oceaneng.2022.112270
|
[16] |
LEE K L. Cyclic strength of a sensitive clay of eastern Canada[J]. Canadian Geotechnical Journal, 1979, 16(1): 163-176. doi: 10.1139/t79-014
|
[17] |
HYODO M, YASUHARA K, HIRAO K. Prediction of clay behaviour in undrained and partially drained cyclic triaxial tests[J]. Soils and Foundations, 1992, 32(4): 117-127. doi: 10.3208/sandf1972.32.4_117
|
[18] |
KLUGER M O, KREITER S, MOON V G, et al. Undrained cyclic shear behaviour of weathered tephra[J]. Géotechnique, 2019, 69(6): 489-500. doi: 10.1680/jgeot.17.P.083
|
[19] |
LENG J, YE G L, YE B, et al. Laboratory test and empirical model for shear modulus degradation of soft marine clays[J]. Ocean Engineering, 2017, 146: 101-114. doi: 10.1016/j.oceaneng.2017.09.057
|
[20] |
SAHDI F, TOM J, HOU Z C, et al. Influence of stress history on undrained cyclic shear strength evolution[J]. Canadian Geotechnical Journal, 2022, 59: 1020-1032. doi: 10.1139/cgj-2021-0114
|
[21] |
WICHTMANN T, TRIANTAFYLLIDIS T. Monotonic and cyclic tests on Kaolin: a database for the development, calibration and verification of constitutive models for cohesive soils with focus to cyclic loading[J]. Acta Geotechnica, 2018, 13(5): 1103-1128. doi: 10.1007/s11440-017-0588-3
|
[22] |
PAN K, YUAN ZH, ZHAO CF. et al. Undrained shear and stiffness degradation of intact marine clay under monotonic and cyclic loading[J]. Engineering Geology, 2022, 297: 106502. doi: 10.1016/j.enggeo.2021.106502
|
[23] |
张炜, 李亚, 周松望, 等. 南海北部区域黏土循环动力特性试验研究[J]. 岩土力学, 2018, 39(7): 2413-2423.
ZHANG Wei, LI Ya, ZHOU Songwang, et al. Experimental research on cyclic behaviors of clay in the northern region of South China Sea[J]. Rock and Soil Mechanics, 2018, 39(7): 2413-2423. (in Chinese)
|
[24] |
THIAN S Y, LEE C Y. Cyclic stress-controlled tests on offshore clay[J]. Journal of Rock Mechanics and Geotechnical Engineering, 2017, 9(2): 376-381. doi: 10.1016/j.jrmge.2016.06.013
|
[25] |
周燕国. 土结构性的剪切波速表征及对动力特性的影响[D]. 杭州: 浙江大学, 2007.
ZHOU Yanguo. Shear Wave Velocity-Based Characterization of Soil Structure and Its Effects on Dynamic Behavior[D]. Hangzhou: Zhejiang University, 2007. (in Chinese)
|
[26] |
LI L L, DAN H B, WANG L Z. Undrained behavior of natural marine clay under cyclic loading[J]. Ocean Engineering, 2011, 38(16): 1792-1805. doi: 10.1016/j.oceaneng.2011.09.004
|
[27] |
年廷凯, 焦厚滨, 范宁, 等. 南海北部陆坡软黏土动力应变-孔压特性试验[J]. 岩土力学, 2018, 39(5): 1564-1572, 1580.
NIAN Tingkai, JIAO Houbin, FAN Ning, et al. Experiment on dynamic strain-pore pressure of soft clay in the northern slope of South China Sea[J]. Rock and Soil Mechanics, 2018, 39(5): 1564-1572, 1580. (in Chinese)
|
[28] |
SHAN Y, MENG Q, YU S, et al. Energy based cyclic strength for the influence of mineral composition on artificial marine clay[J]. Engineering Geology, 2020, 274: 105713. doi: 10.1016/j.enggeo.2020.105713
|
[29] |
MALEK A M, AZZOUZ A S, BALIGH M M, et al. Behavior of foundation clays supporting compliant offshore structures[J]. Journal of Geotechnical Engineering, 1989, 115(5): 615-636. doi: 10.1061/(ASCE)0733-9410(1989)115:5(615)
|
[30] |
WIJEWICKREME D, SOYSA A. Stress-strain pattern-based criterion to assess cyclic shear resistance of soil from laboratory element tests[J]. Canadian Geotechnical Journal, 2016, 53(9): 1460-1473. doi: 10.1139/cgj-2015-0499
|
[31] |
莫海鸿, 单毅, 李慧子, 等. 基于能量法的尾粉土累积应变增长方式研究[J]. 岩土工程学报, 2017, 39(11): 1959-1966. doi: 10.11779/CJGE201711002
MO Haihong, SHAN Yi, LI Huizi, et al. Energy-based method for analyzing accumulative plastic strain growth of tailing silt[J]. Chinese Journal of Geotechnical Engineering, 2017, 39(11): 1959-1966. (in Chinese) doi: 10.11779/CJGE201711002
|
[32] |
QIN Y, YANG Z T, DU X Y, et al. An energy-based model for the generation of excess pore water pressure in saturated coral sand[J]. Marine Georesources and Geotechnology, 2023.
|
[33] |
OKUR V, ANSAL A. Evaluation of cyclic behavior of fine-grained soils using the energy method[J]. Journal of Earthquake Engineering, 2011, 15(4): 601-619. doi: 10.1080/13632469.2010.507298
|
[34] |
DENG Q L, REN X W. An energy method for deformation behavior of soft clay under cyclic loads based on dynamic response analysis[J]. Soil Dynamics and Earthquake Engineering, 2017, 94: 75–82. doi: 10.1016/j.soildyn.2016.12.012
|
[35] |
DAI S, HAN B, LI N B, et al. Morphologic analysis of hysteretic behavior of China Laizhou Bay submarine mucky clay and its cyclic failure criteria[J]. Bulletin of Engineering Geology and the Environment, 2021, 81(1): 52.
|
[36] |
建筑工程地质勘探与取样技术规程: JGJ/T 87—2012[S]. 北京: 中国建筑工业出版社, 2012.
Technical Specification for Engineering Geological Prospecting And Sampling of Constructions: JGJ/T 87—2012[S]. Beijing: China Architecture & Building Press, 2012. (in Chinese)
|
[37] |
土工试验方法标准: GB/T 50123—2019[S]. 北京: 中国计划出版社, 2019.
Standard for geotechnical testing method: GB/T 50123—2019[S]. Beijing: China Planning Press, 2019. (in Chinese)
|
[38] |
ASTM D2487. Standard Practice for Classification of Soils for Engineering Purposes (Unified soil classification system)[S]. West Conshohocken: ASTM International, 2017.
|
[39] |
海上风电场工程岩土试验规程: NB/T 10107—2018[S]. 北京: 中国水利水电出版社, 2018.
Specification for Geotechnical Tests of Offshore Wind Power Projects: NB/T 10107—2018[S]. Beijing: China Water & Power Press, 2018. (in Chinese)
|
[40] |
LUNNE T, BERRE T, ANDERSEN K H, et al. Erratum: effects of sample disturbance and consolidation procedures on measured shear strength of soft marine Norwegian clays[J]. Canadian Geotechnical Journal, 2007, 44(1): 111-111. doi: 10.1139/t07-008
|
[41] |
赵成刚, 刘艳, 李舰, 等. 高等土力学原理[M]. 北京: 清华大学出版社, 2023.
ZHAO Chenggang, LIU Yan, LI Jian, et al. Fundamentals of Soil Mechanics[M]. Beijing: Tsinghua University Press, 2023. (in Chinese)
|
[42] |
吴凤彩. 粘性土的吸附结合水测量和渗流的某些特点[J]. 岩土工程学报, 1984, 6(6): 84-93. http://cge.nhri.cn/article/id/8834
WU Fengcai. Some characteristics of adsorption combined water measurement and seepage of cohesive soil[J]. Chinese Journal of Geotechnical Engineering, 1984, 6(6): 84-93. (in Chinese) http://cge.nhri.cn/article/id/8834
|
[43] |
VUCETIC M, DOBRY R. Effect of soil plasticity on cyclic response[J]. Journal of Geotechnical Engineering, 1991, 117: 89-107. doi: 10.1061/(ASCE)0733-9410(1991)117:1(89)
|
[1] | LIU Hongwei, WANG Mengqi, ZHAN Liangtong, FENG Song, WU Tao. Method and apparatus for measuring in-situ gas diffusion coefficient and permeability coefficient of unsaturated soils[J]. Chinese Journal of Geotechnical Engineering, 2024, 46(5): 948-958. DOI: 10.11779/CJGE20221228 |
[2] | JI Yong-xin, ZHANG Wen-jie. Experimental study on diffusion of chloride ions in unsaturated soils[J]. Chinese Journal of Geotechnical Engineering, 2021, 43(9): 1755-1760. DOI: 10.11779/CJGE202109022 |
[3] | XU Fei, CAI Yue-bo, QIAN Wen-xun, WEI Hua, ZHUANG Hua-xia. Mechanism of cemented soil modified by aliphatic ionic soil stabilizer[J]. Chinese Journal of Geotechnical Engineering, 2019, 41(9): 1679-1687. DOI: 10.11779/CJGE201909012 |
[4] | HUANG Wei, LIU Qing-bing, XIANG Wei, ZHANG Yun-long, WANG Zhen-hua, DAO Minh Huan. Water adsorption characteristics and water retention model for montmorillonite modified by ionic soil stabilizer[J]. Chinese Journal of Geotechnical Engineering, 2019, 41(1): 121-130. DOI: 10.11779/CJGE201901013 |
[5] | ZHANG Wen-jie, GU Chen, LOU Xiao-hong. Measurement of hydraulic conductivity and diffusion coefficient of backfill for soil-bentonite cutoff wall under low consolidation pressure[J]. Chinese Journal of Geotechnical Engineering, 2017, 39(10): 1915-1921. DOI: 10.11779/CJGE201710021 |
[6] | HUANG Qing-fu, ZHAN Mei-li, SHENG Jin-chang, LUO Yu-long, ZHANG Xia. Numerical method to generate granular assembly with any desired relative density based on DEM[J]. Chinese Journal of Geotechnical Engineering, 2015, 37(3): 537-543. DOI: 10.11779/CJGE201503019 |
[7] | LIU Qing-bing, XIANG Wei, CUI De-shan. Effect of ionic soil stabilizer on bound water of expansive soils[J]. Chinese Journal of Geotechnical Engineering, 2012, 34(10): 1887-1895. |
[8] | LIU Qing-bing, XIANG Wei, CUI De-shan, CAO Li-jing. Mechanism of expansive soil improved by ionic soil stabilizer[J]. Chinese Journal of Geotechnical Engineering, 2011, 33(4): 648. |
[9] | Microcosmic mechanism of ion transport in charged clay soils[J]. Chinese Journal of Geotechnical Engineering, 2010, 32(11): 1794-1799. |
[10] | XI Yong, Hui, REN Jie. Laboratory determination of diffusion and distribution coefficients of contaminants in clay soil[J]. Chinese Journal of Geotechnical Engineering, 2006, 28(3): 397-402. |