Citation: | YING Hongwei, XIONG Yifan, LI Binghe, LÜ Wei, CHENG Kang, ZHANG Jinhong. Time-dependent solution for ground settlement induced by excavation in soft clay[J]. Chinese Journal of Geotechnical Engineering, 2024, 46(10): 2041-2050. DOI: 10.11779/CJGE20230727 |
[1] |
郑刚. 软土地区基坑工程变形控制方法及工程应用[J]. 岩土工程学报, 2022, 44(1): 1-36.
ZHENG Gang. Method and application of deformation control of excavations in soft ground[J]. Chinese Journal of Geotechnical Engineering, 2022, 44(1): 1-36. (in Chinese)
|
[2] |
王卫东, 徐中华, 王建华. 上海地区深基坑周边地表变形性状实测统计分析[J]. 岩土工程学报, 2011, 33(11): 1659-1666.
WANG Weidong, XU Zhonghua, WANG Jianhua. Statistical analysis of characteristics of ground surface settlement caused by deep excavations in Shanghai soft soils[J]. Chinese Journal of Geotechnical Engineering, 2011, 33(11): 1659-1666. (in Chinese)
|
[3] |
江晓峰, 刘国彬, 张伟立, 等. 基于实测数据的上海地区超深基坑变形特性研究[J]. 岩土工程学报, 2010 32(增刊2): 570-573.
JIANG Xiaofeng, LIU Guobin, ZHANG Weili, et al. Deformation characteristics of ultra-deep foundation pit in Shanghai based on measured data[J]. Chinese Journal of Geotechnical Engineering, 2010, 32(S2): 570-573. (in Chinese)
|
[4] |
TAN Y, WEI B, ZHOU X, et al. Lessons learned from construction of Shanghai metro stations: importance of quick excavation, prompt propping, timely casting, and segmented construction[J]. Journal of Performance of Constructed Facilities, 2015, 29(4): 04014096. doi: 10.1061/(ASCE)CF.1943-5509.0000599
|
[5] |
CHENG K, XU R Q, YING H W, et al. Observed performance of a 30.2 m deep-large basement excavation in Hangzhou soft clay[J]. Tunnelling and Underground Space Technology, 2021, 111: 103872. doi: 10.1016/j.tust.2021.103872
|
[6] |
MU L L, HUANG M S. Small strain based method for predicting three-dimensional soil displacements induced by braced excavation[J]. Tunnelling and Underground Space Technology, 2016, 52: 12-22. doi: 10.1016/j.tust.2015.11.001
|
[7] |
YING H W, CHENG K, LIU S J, et al. An efficient method for evaluating the ground surface settlement of Hangzhou metro deep basement considering the excavation process[J]. Acta Geotechnica, 2022, 17(12): 5759-5771. doi: 10.1007/s11440-022-01549-x
|
[8] |
SAGASETA C. Analysis of undrained soil deformation due to ground loss[J]. Géotechnique, 1987, 37(3): 301–320. doi: 10.1680/geot.1987.37.3.301
|
[9] |
XU K J, POULOS H G. Theoretical study of pile behaviour induced by a soil cut[C]//ISRM International Symposium. ISRM, 2000: ISRM-IS-2000-377.
|
[10] |
钱建固, 王伟奇. 刚性挡墙变位诱发墙后地表沉降的理论解析[J]. 岩石力学与工程学报, 2013, 32(增刊1): 2698-2703.
QIAN Jiangu, WANG Weiqi. Analytical solutions to ground settlement induced by movement of rigid retaining wall[J]. Chinese Journal of Rock Mechanics and Engineering, 2013, 32(S1): 2698-2703. (in Chinese)
|
[11] |
沈路遥, 钱建固, 张戎泽. 挡墙水平变位诱发地表沉降的简化解析解[J]. 岩土力学, 2016, 37(8): 2293-2298.
SHEN Luyao, QIAN Jiangu, ZHANG Rongze. A simplified analytical solution for ground settlement induced by horizontal movement of retailing wall[J]. Rock and Soil Mechanics, 2016, 37(8): 2293-2298. (in Chinese)
|
[12] |
胡之锋, 陈健, 邱岳峰, 等. 挡墙水平变位诱发地表沉降的显式解析解[J]. 岩土力学, 2018, 39(11): 4165-4175.
HU Zhifeng, CHEN Jian, QIU Yuefeng, et al. Analytical formula for ground settlement induced by horizontal movement of retaining wall[J]. Rock and Soil Mechanics, 2018, 39(11): 4165-4175. (in Chinese)
|
[13] |
FAN X Z, PHOON K K, XU C J, et al. Closed-form solution for excavation-induced ground settlement profile in clay[J]. Computers and Geotechnics, 2021, 137: 104266. doi: 10.1016/j.compgeo.2021.104266
|
[14] |
MESQUITA A D, CODA H B. An alternative time integration procedure for Boltzmann viscoelasticity: a BEM approach[J]. Computers & Structures, 2001, 79(16): 1487-1496.
|
[15] |
MESQUITA A D, CODA H B. A simple Kelvin and Boltzmann viscoelastic analysis of three-dimensional solids by the boundary element method[J]. Engineering Analysis with Boundary Elements, 2003, 27(9): 885-895. doi: 10.1016/S0955-7997(03)00060-2
|
[16] |
祝彦知. 桩基础长期沉降与变形的黏弹性分析理论及应用[D]. 上海: 同济大学, 2006.
ZHU Yanzhi. Viscoelastic Analysis Theory and Application of Long Term Settlement and Deformation of Pile Foundation[D]. Shanghai: Tongji University, 2006. (in Chinese)
|
[17] |
FLAMANT A. Sur la répartition des pressions dans un solide rectangulaire chargé transversalement[J]. CR Acad Sci Paris, 1892, 114: 1465-1468.
|
[18] |
陈宗基, 康文法. 岩石的封闭应力、蠕变和扩容及本构方程[J]. 岩石力学与工程学报, 1991, 10(4): 299-312.
CHEN Zongji, KANG Wenfa. On the locked in stress, creep and dilatation of rocks, and the constitutive equations[J]. Chinese Journal of Rock Mechanics and Engineering, 1991, 10(4): 299-312. (in Chinese)
|
[19] |
OU C Y, HSIEH P G, CHIOU D C. Characteristics of ground surface settlement during excavation[J]. Canadian Geotechnical Journal, 1993, 30(5): 758-767. doi: 10.1139/t93-068
|
[20] |
MANA A I, CLOUGH G W. Prediction of movements for braced cuts in clay[J]. Journal of the Geotechnical Engineering Division, 1981, 107(6): 759-777. doi: 10.1061/AJGEB6.0001150
|
[21] |
MOORMANN C. Analysis of wall and ground movements due to deep excavations in soft soil based on a new worldwide database[J]. Soils and Foundations, 2004, 44(1): 87-98. doi: 10.3208/sandf.44.87
|
[22] |
邓会元, 戴国亮, 邱国阳, 等. 杭州湾淤泥质粉质黏土排水蠕变试验及元件蠕变模型[J]. 东南大学学报(自然科学版), 2021, 51(2): 318-324.
DENG Huiyuan, DAI Guoliang, QIU Guoyang, et al. Drained creep test and component creep model of soft silty clay in Hangzhou Bay[J]. Journal of Southeast University (Natural Science Edition), 2021, 51(2): 318-324. (in Chinese)
|
[23] |
周秋娟, 陈晓平. 侧向卸荷条件下软土典型力学特性试验研究[J]. 岩石力学与工程学报, 2009, 28(11): 2215-2221. doi: 10.3321/j.issn:1000-6915.2009.11.008
ZHOU Qiujuan, CHEN Xiaoping. Test research on typical mechanical characteristics of soft clay under lateral unloading condition[J]. Chinese Journal of Rock Mechanics and Engineering, 2009, 28(11): 2215-2221. (in Chinese) doi: 10.3321/j.issn:1000-6915.2009.11.008
|
[24] |
贾敏才, 赵舜, 张震. 侧向卸荷条件下结构性软黏土蠕变特性试验研究[J]. 西南交通大学学报, 2020, 55(6): 1257-1263.
JIA Mincai, ZHAO Shun, ZHANG Zhen. Experimental study on creep characteristics of structural soft clay under lateral unloading condition[J]. Journal of Southwest Jiaotong University, 2020, 55(6): 1257-1263. (in Chinese)
|
[25] |
ZHANG Z G, HUANG M S, ZHANG C P, et al. Time-domain analyses for pile deformation induced by adjacent excavation considering influences of viscoelastic mechanism[J]. Tunnelling and Underground Space Technology, 2019, 85: 392-405. doi: 10.1016/j.tust.2018.12.020
|
[26] |
杨敏, 赵锡宏. 分层土中的单桩分析法[J]. 同济大学学报(自然科学版), 1992, 20(4): 421-428.
YANG Min, ZHAO Xihong. An approach for a single pile in layered soil[J]. Journal of Tongji University (Natural Science), 1992, 20(4): 421-428. (in Chinese)
|
[27] |
应宏伟, 孙威, 吕蒙军, 等. 复杂环境下某深厚软土基坑的实测性状研究[J]. 岩土工程学报, 2014, 36(增刊2): 424-430.
YING Hongwei, SUN Wei, LÜ Mengjun, et al. Measured characteristics of a deep soft soil excavation in complex environment[J]. Chinese Journal of Geotechnical Engineering, 2014, 36(S2): 424-430. (in Chinese)
|
[1] | Time-dependent analysis of deformation induced by soft soil pit excavation adjacent to small curvature radius tunnels[J]. Chinese Journal of Geotechnical Engineering. DOI: 10.11779/CJGE20240469 |
[2] | GE Shangqi, JIANG Wenhao, ZHENG Lingwei, XIE Xinyu, XIE Kanghe. Analytical solution for one-dimensional electroosmosis consolidation considering threshold potential gradient under time-dependent loading[J]. Chinese Journal of Geotechnical Engineering, 2023, 45(3): 580-589. DOI: 10.11779/CJGE20211555 |
[3] | LUO Qing-zi, CHEN Xiao-ping, YUAN Bing-xiang, FENG De-luan. Elastic visco-plastic model for soft clay based on isochronous curves[J]. Chinese Journal of Geotechnical Engineering, 2018, 40(S2): 142-146. DOI: 10.11779/CJGE2018S2029 |
[4] | ZHANG Jian-hai, WANG Ren-kun, ZHOU Zhong, ZHENG Lu, ZHANG Ru, WANG Lu, XIE He-ping. Optimum support time of brittle underground cavern based on time-dependent deformation[J]. Chinese Journal of Geotechnical Engineering, 2017, 39(10): 1908-1914. DOI: 10.11779/CJGE201710020 |
[5] | WANG Hua-ning, ZENG Guang-shang, JIANG Ming-jing. Analytical solutions of deeply buried tunnel during construction considering time-dependent behaviors of rock——simulations and solutions of sequential excavation, rockbolt reinforcement and liner installation[J]. Chinese Journal of Geotechnical Engineering, 2014, 36(7): 1334-1343. DOI: 10.11779/CJGE201407018 |
[6] | YIN Zhenyu, ZHANG Dong, Mei, HICHER Pierre yves. Modelling of time-dependent behaviour of soft soils using simple elasto-viscoplastic model[J]. Chinese Journal of Geotechnical Engineering, 2008, 30(6): 880-888. |
[7] | ZHANG Dongmei, HUANG Hongwei, YANG Jun. Influence of partial drainage of linings on long-term surface settlement over tunnels in soft soils[J]. Chinese Journal of Geotechnical Engineering, 2005, 27(12): 1430-1436. |
[8] | GAO Xiaoping, YANG Chunhe, WU Wen. Experimental studies on time dependent properties of rock salt[J]. Chinese Journal of Geotechnical Engineering, 2005, 27(5): 558-561. |
[9] | Liu Xingwang, Shi Zuyuan, Yi Deqing, Wu Shiming. Deformation characteristics analysis of braced excavation on soft clay[J]. Chinese Journal of Geotechnical Engineering, 1999, 21(4): 456-460. |
[10] | Li Binghe, Xie Kanghe, Ying Hongwei, Zeng Guoxi. Semi analytical solution of one dimensional non linear consolidation of soft clay under time dependent loading[J]. Chinese Journal of Geotechnical Engineering, 1999, 21(3): 32-37. |
1. |
李恭晨. 吊脚支护40 m岩土二元构造深基坑变形特性研究. 建筑技术. 2024(S1): 84-89 .
![]() |