• 全国中文核心期刊
  • 中国科技核心期刊
  • 美国工程索引(EI)收录期刊
  • Scopus数据库收录期刊
CAO Yang, LIU Yang, ZHANG Chaoyu, YANG Junjie, LI Guozheng. Synchronous grouting diffusion and parameter optimization of shield tunnels based on discrete element method[J]. Chinese Journal of Geotechnical Engineering, 2024, 46(10): 2119-2128. DOI: 10.11779/CJGE20230726
Citation: CAO Yang, LIU Yang, ZHANG Chaoyu, YANG Junjie, LI Guozheng. Synchronous grouting diffusion and parameter optimization of shield tunnels based on discrete element method[J]. Chinese Journal of Geotechnical Engineering, 2024, 46(10): 2119-2128. DOI: 10.11779/CJGE20230726

Synchronous grouting diffusion and parameter optimization of shield tunnels based on discrete element method

More Information
  • Received Date: July 30, 2023
  • Available Online: January 09, 2024
  • In order to evaluate the quality of the synchronous grouting of shield construction and to propose the regulation means of grouting parameters, taking the coastal sandy soil stratum as the target, the model tests on shield synchronous grouting are designed and carried out to obtain the slurry diffusion laws at various locations at the outside of a tunnel. On the basis of calibrating the contact parameters between particles in the discrete element model with the help of the test results, a continuous-discrete element coupling model for the shield synchronous grouting is established to simulate the process of filling and penetration of the slurry, and to analyze the main reasons leading to the difference in the thickness of the slurry layer in comparison with the test results, and then to optimize the filling effects of the slurry by adjusting the grouting parameters. The results show that the particle migration characteristics of the discrete element simulation model can effectively display the filling and permeation phenomena of the slurry in the excavation gap and the surrounding soil layer. Affected by the mobility, the slurry is easy to gather in the grouting hole, and if the grouting pressure is insufficient, it will lead to poor homogeneity of the slurry layer at the upper and lower sides of the tunnel which are far away from the grouting hole. The filling effects can be effectively improved by adjusting the pressure difference between the grouting holes of the shield machine. Affected by the pressure of the soil layer, the thickness of the slurry layer at the upper side of the tunnel is relatively thinner compared to that at the lower side, and the slurry at the lateral side of the tunnel will deposit under the action of its own gravity, and shows a distribution of "thin on the upper part and thick on the lower part".
  • [1]
    叶飞, 苟长飞, 刘燕鹏, 等. 盾构隧道壁后注浆浆液时变半球面扩散模型[J]. 同济大学学报(自然科学版), 2012, 40(12): 1789-1794. doi: 10.3969/j.issn.0253-374x.2012.12.008

    YE Fei, GOU Changfei, LIU Yanpeng, et al. Half-spherical surface diffusion model of shield tunnel back-filled grouts[J]. Journal of Tongji University (Natural Science), 2012, 40(12): 1789-1794. (in Chinese) doi: 10.3969/j.issn.0253-374x.2012.12.008
    [2]
    YE F, YANG T, MAO J H, et al. Half-spherical surface diffusion model of shield tunnel back-fill grouting based on infiltration effect[J]. Tunnelling and Underground Space Technology, 2019, 83: 274-281. doi: 10.1016/j.tust.2018.10.004
    [3]
    叶飞, 王斌, 韩鑫, 等. 盾构隧道壁后注浆试验与浆液扩散机理研究进展[J]. 中国公路学报, 2020, 33(12): 92-104. doi: 10.3969/j.issn.1001-7372.2020.12.007

    YE Fei, WANG Bin, HAN Xin, et al. Review of shield tunnel backfill grouting tests and its diffusion mechanism[J]. China Journal of Highway and Transport, 2020, 33(12): 92-104. (in Chinese) doi: 10.3969/j.issn.1001-7372.2020.12.007
    [4]
    叶飞, 李思翰, 夏天晗, 等. 低渗地层盾构隧道壁后注浆压密-劈裂扩散模型研究[J]. 岩土工程学报, 2023, 45(10): 2014-2022.

    YE Fei, LI Sihan, XIA Tianhan, et al. Compaction-fracture diffusion model for backfill grouting of shield tunnels in low permeability strata[J]. Chinese Journal of Geotechnical Engineering, 2023, 45(10): 2014-2022. (in Chinese)
    [5]
    李志明, 廖少明, 戴志仁. 盾构同步注浆填充机理及压力分布研究[J]. 岩土工程学报, 2010, 32(11): 1752-1757.

    LI Zhiming, LIAO Shaoming, DAI Zhiren. Theoretical study on synchronous grouting filling patterns and pressure distribution of EPB shield tunnels[J]. Chinese Journal of Geotechnical Engineering, 2010, 32(11): 1752-1757. (in Chinese)
    [6]
    周佳媚, 刘欢, 张迁, 等. 考虑浆液稠度变化的盾构壁后注浆扩散模型[J]. 铁道科学与工程学报, 2018, 15(3): 710-717. doi: 10.3969/j.issn.1672-7029.2018.03.022

    ZHOU Jiamei, LIU Huan, ZHANG Qian, et al. Backfilled grouting diffusion model of shield tunnel considering variation of slurry consistency[J]. Journal of Railway Science and Engineering, 2018, 15(3): 710-717. (in Chinese) doi: 10.3969/j.issn.1672-7029.2018.03.022
    [7]
    韩鑫, 叶飞, 应凯臣, 等. 考虑自重的盾构壁后注浆浆液驱替渗透扩散[J]. 华中科技大学学报(自然科学版), 2020, 48(4): 37-42.

    HAN Xin, YE Fei, YING Kaichen, et al. Displacement effect on penetration diffusion of backfill grouting of shield tunnel considering self-weight[J]. Journal of Huazhong University of Science and Technology (Natural Science Edition), 2020, 48(4): 37-42. (in Chinese)
    [8]
    白云, 戴志仁, 张莎莎, 等. 盾构隧道同步注浆浆液压力扩散模式研究[J]. 中国铁道科学, 2011, 32(4): 38-45.

    BAI Yun, DAI Zhiren, ZHANG Shasha, et al. Study on the grout pressure dissipation mode in simultaneous backfill grouting during shield tunneling[J]. China Railway Science, 2011, 32(4): 38-45. (in Chinese)
    [9]
    张聪, 梁经纬, 阳军生, 等. 考虑区间分布的幂律流体脉动渗透注浆扩散机制研究[J]. 岩土工程学报, 2018, 40(11): 2120-2128. doi: 10.11779/CJGE201811019

    ZHANG Cong, LIANG Jingwei, YANG Junsheng, et al. Diffusion mechanism of pulsating seepage grouting slurry with power-law fluid considering interval distribution[J]. Chinese Journal of Geotechnical Engineering, 2018, 40(11): 2120-2128. (in Chinese) doi: 10.11779/CJGE201811019
    [10]
    张莎莎, 戴志仁, 白云. 盾构隧道同步注浆浆液压力分布规律模型试验研究[J]. 中国铁道科学, 2015, 36(5): 43-53. doi: 10.3969/j.issn.1001-4632.2015.05.07

    ZHANG Shasha, DAI Zhiren, BAI Yun. Model test research on distribution law of grout pressure for simultaneous backfill grouting during shield tunneling[J]. China Railway Science, 2015, 36(5): 43-53. (in Chinese) doi: 10.3969/j.issn.1001-4632.2015.05.07
    [11]
    DING W Q, CHAO D, ZHU Y H, et al. The behavior of synchronous grouting in a quasi-rectangular shield tunnel based on a large visualized model test[J]. Tunnelling and Underground Space Technology, 2019, 83: 409-424. doi: 10.1016/j.tust.2018.10.006
    [12]
    ZHAO T C, DING W Q, QIAO Y F, et al. A large-scale synchronous grouting test for a quasi-rectangular shield tunnel: observation, analysis and interpretation[J]. Tunnelling and Underground Space Technology, 2019, 91: 103018. doi: 10.1016/j.tust.2019.103018
    [13]
    张连震, 李志鹏, 刘人太, 等. 砂层劈裂-压密注浆模拟试验系统研发及试验[J]. 岩土工程学报, 2019, 41(4): 665-674.

    ZHANG Lianzhen, LI Zhipeng, LIU Rentai, et al. Simulation tests on fracture-compaction grouting process in sand layer[J]. Chinese Journal of Geotechnical Engineering, 2019, 41(4): 665-674. (in Chinese)
    [14]
    张云, 殷宗泽, 徐永福. 盾构法隧道引起的地表变形分析[J]. 岩石力学与工程学报, 2002(3): 388-392. doi: 10.3321/j.issn:1000-6915.2002.03.019

    ZHANG Yun, YING Zongze, XU Yongfu. Analysis on three-dimensional ground surface deformations due to shield tunnel[J]. Chinese Journal of Rock Mechanics and Engineering, 2002(3): 388-392. (in Chinese) doi: 10.3321/j.issn:1000-6915.2002.03.019
    [15]
    李磊, 张孟喜, 吴惠明, 等. 近距离多线叠交盾构施工对既有隧道变形的影响研究[J]. 岩土工程学报, 2014, 36(6): 1036-1043.

    LI Lei, ZHANG Mengxi, WU Huiming, et al. Influence of short-distance multi-line overlapped shield tunnelling on deformation of existing tunnels[J]. Chinese Journal of Geotechnical Engineering, 2014, 36(6): 1036-1043. (in Chinese)
    [16]
    李培楠, 英旭, 石来, 等. 基于CFD的盾构同步注浆填充扩散运动力学分析[J]. 地下空间与工程学报, 2021, 17(增刊1): 126-132.

    LI Peinan, YING Xu, SHI Lai, et al. Hydrodynamics analysis on fill diffusion in shield synchronous grouting based on CFD[J]. Chinese Journal of Underground Space and Engineering, 2021, 17(S1): 126-132. (in Chinese)
    [17]
    KASPER T, MESCHKE G. On the influence of face pressure, grouting pressure and TBM design in soft ground tunnelling[J]. Tunnelling and Underground Space Technology, 2006, 21(2): 160-171. doi: 10.1016/j.tust.2005.06.006
    [18]
    MICHAEL K, DIMITRIS L, IOANNIS V, et al. Development of a 3D finite element model for shield EPB tunnelling[J]. Tunnelling and Underground Space Technology, 2017, 65: 22-34. doi: 10.1016/j.tust.2017.02.001
    [19]
    王胤, 陶奕辰, 程旷, 等. 任意解流流固耦合数值方法及在砂土渗流分析中应用[J]. 岩土工程学报, 2021, 43(11): 2084-2093. doi: 10.11779/CJGE202111015

    WANG Yin, TAO Yichen, CHENG Kuang, et al. Arbitrary resolved-unresolved CFD-DEM coupling method and its application to seepage flow analysis in sandy soil[J]. Chinese Journal of Geotechnical Engineering, 2021, 43(11): 2084-2093. (in Chinese) doi: 10.11779/CJGE202111015
    [20]
    土工试验方法标准: GB/T 50123—2019[S]. 北京: 中国计划出版社, 2019.

    Standard for Geotechnical Testing Method: GB/T 50123—2019[S]. Beijing: China Planning Press, 2019. (in Chinese)
    [21]
    梁精华. 盾构隧道壁后注浆材料配比优化及浆体变形特性研究[D]. 南京: 河海大学, 2006.

    LIANG Jinghua. Study on the Proportion of Backfill-Grouting Materials and Grout Deformation Properties of Shield Tunnel[D]. Nanjing: Hohai University, 2006. (in Chinese)
    [22]
    CAVARRETTA I, COOP M, O'SULLIVAN C. The influence of particle characteristics on the behaviour of coarse grained soils[J]. Géotechnique, 2010, 60(6): 413-423. doi: 10.1680/geot.2010.60.6.413
    [23]
    DI RENZO A, DI MAIO F P. Comparison of contact-force models for the simulation of collisions in DEM-based granular flow codes[J]. Chemical Engineering Science, 2004, 59(3): 525-541. doi: 10.1016/j.ces.2003.09.037
    [24]
    ZHANG Z X, HU X Y, SCOTT K D. A discrete numerical approach for modeling face stability in slurry shield tunnelling in soft soils[J]. Computers and Geotechnics, 2011, 38(1): 94-104. doi: 10.1016/j.compgeo.2010.10.011
    [25]
    周健, 池永. 砂土力学性质的细观模拟[J]. 岩土力学, 2003, 24(6): 901-906. doi: 10.3969/j.issn.1000-7598.2003.06.006

    ZHOU Jian, CHI Yong. Mesomechanical simulation of sand mechanical properties[J]. Rock and Soil Mechanics, 2003, 24(6): 901-906. (in Chinese) doi: 10.3969/j.issn.1000-7598.2003.06.006
    [26]
    HUANG X, HANLEY K J, O'SULLIVAN C, et al. Effect of sample size on the response of DEM samples with a realistic grading[J]. Particuology, 2014, 15: 107-115. doi: 10.1016/j.partic.2013.07.006
    [27]
    KODICHERLA S K. Exploring the Mechanical Behaviour of Granular Materials Considering Particle Shape Characteristics: A Discrete Element Investigation[D]. Liverpool: University of Liverpool, 2021.
    [28]
    WANG J, GUTIERREZ M. Discrete element simulations of direct shear specimen scale effects[J]. Géotechnique, 2010, 60(5): 395-409. doi: 10.1680/geot.2010.60.5.395
    [29]
    PENG C, LIU W R, WANG Z. Parameter checking method of large scale particle model[J]. Geotechnical and Geological Engineering, 2021, 39(2): 1533-1540. doi: 10.1007/s10706-020-01574-1
  • Related Articles

    [1]MA Qiang, LI Meng, ZHOU Xinlong, XI Lei, SUN Jun. Mechanical properties and microscopic mechanisms of enzyme-induced calcium carbonate precipitation (EICP)-reinforced clay mixtures with rubber particles[J]. Chinese Journal of Geotechnical Engineering, 2024, 46(S2): 72-76. DOI: 10.11779/CJGE2024S20001
    [2]YANG Shengqi, JING Xiaojiao. Experimental study on physical and mechanical properties of sandstone after drying-wetting cycles of brine[J]. Chinese Journal of Geotechnical Engineering, 2023, 45(10): 2165-2171. DOI: 10.11779/CJGE20220830
    [3]LIU Kuan, YE Wan-jun, JING Hong-jun, DUAN Xu, ZHANG Ji. Microscopic damage identification and macroscopic mechanical response of loess in seasonal frozen areas[J]. Chinese Journal of Geotechnical Engineering, 2021, 43(S1): 192-197. DOI: 10.11779/CJGE2021S1035
    [4]ZHAO Gui-tao, HAN Zhong, ZOU Wei-lie, WANG Xie-qun. Influences of drying-wetting-freeze-thaw cycles on soil-water and shrinkage characteristics of expansive soil[J]. Chinese Journal of Geotechnical Engineering, 2021, 43(6): 1139-1146. DOI: 10.11779/CJGE202106018
    [5]CUI Xiang, ZHU Chang-qi, HU Ming-jian, WANG Ren, LIU Hai-feng. Microscopic mechanism of permeability of coral sand[J]. Chinese Journal of Geotechnical Engineering, 2020, 42(12): 2336-2341. DOI: 10.11779/CJGE202012022
    [6]LONG An-fa, CHEN Kai-sheng, JI Yong-xin. Experimental study on wetting-drying cycles of red clay slopes under different rainfall intensities[J]. Chinese Journal of Geotechnical Engineering, 2019, 41(S2): 193-196. DOI: 10.11779/CJGE2019S2049
    [7]CAI Zheng-yin, CHEN Hao, HUANG Ying-hao, ZHANG Chen. Failure mechanism of canal slopes of expansive soils considering action of wetting-drying cycles[J]. Chinese Journal of Geotechnical Engineering, 2019, 41(11): 1977-1982. DOI: 10.11779/CJGE201911001
    [8]LIU Xin-rong, LI Dong-liang, ZHANG Liang, WANG Zhen. Influence of wetting-drying cycles on mechanical properties and microstructure of shaly sandstone[J]. Chinese Journal of Geotechnical Engineering, 2016, 38(7): 1291-1300. DOI: 10.11779/CJGE201607017
    [9]YE Wei-min, WAN Min, CHEN Bao, CUI Yu-jun, WANG Ju. Micro-structural behaviors of densely compacted GMZ01 bentonite under drying/wetting cycles[J]. Chinese Journal of Geotechnical Engineering, 2011, 33(8): 1173-1177.
    [10]Influence of repeated drying and wetting cycles on mechanical behaviors of unsaturated soil[J]. Chinese Journal of Geotechnical Engineering, 2010, 32(1).
  • Cited by

    Periodical cited type(9)

    1. 欧阳淼,张红日,邓人睿,王桂尧,肖杰,赵亚. 黄原胶生物聚合物改良膨胀土裂隙演化规律研究. 岩土工程学报. 2025(01): 106-114 . 本站查看
    2. 黄雪琪. 干湿循环对红砂岩力学与微结构的影响研究. 山西建筑. 2024(17): 93-96 .
    3. 周锐,王保田,王斯杰,胡豹,王培清,张福海. 不同粒径组废旧轮胎橡胶颗粒改良膨胀土性能试验研究. 长江科学院院报. 2023(10): 115-122 .
    4. 华冰. 铜尾矿砂-水泥复合改性膨胀土性能试验研究. 铁道建筑技术. 2023(10): 16-19 .
    5. 田亚坤,伍玲玲,禹雪阳,刘邦瑶,张志军,章求才,戴兵,贺桂成. 干湿循环作用下金属矿尾砂MICP加固体的宏观性状与细观力学特性. 中国有色金属学报. 2023(09): 3104-3116 .
    6. 马鸿发,刘清秉,李靖. 掺砂率与干密度对膨润土收缩特性影响. 地质科技通报. 2023(06): 76-85 .
    7. 罗震宇. 干湿循环作用下改良膨胀土力学特性及微观机制研究. 交通科学与工程. 2023(06): 66-74 .
    8. 车瑜佩,李凯,贾静雯,张举宵,章凯,王乐宁. 干湿循环作用下膨胀土路基工程特性及其控制策略分析. 内蒙古科技与经济. 2022(16): 100-104+119 .
    9. 朱彦鹏,王浩,刘东瑞,吕玉宝,张志琦. 基于正交设计的风化砂岩流态固化土抗剪强度试验研究. 岩土工程学报. 2022(S1): 46-51 . 本站查看

    Other cited types(12)

Catalog

    Article views (397) PDF downloads (91) Cited by(21)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return