Citation: | MA Qijie, ZHOU Chao. Centrifuge modelling of inclination of 2×2 energy pile groups subjected to non-symmetrical cyclic thermal loading[J]. Chinese Journal of Geotechnical Engineering, 2024, 46(10): 2158-2168. DOI: 10.11779/CJGE20230678 |
[1] |
BRANDL H. Energy foundations and other thermos-active ground structures [J]. Géotechnique, 2006, 56(2): 81-122. doi: 10.1680/geot.2006.56.2.81
|
[2] |
江强强, 焦玉勇, 骆进, 等. 能源桩传热与承载特性研究现状及展望[J]. 岩土力学, 2019, 40(9): 3351-3362, 3372.
JIANG Qiangqiang, JIAO Yuyong, LUO Jin, et al. Review and prospect on heat transfer and bearing performance of energy piles[J]. Rock and Soil Mechanics, 2019, 40(9): 3351-3362, 3372. (in Chinese)
|
[3] |
MA Q J, FAN J H, LIU H T. Energy pile-based ground source heat pump system with seasonal solar energy storage[J]. Renewable Energy, 2023, 206: 1132-1146. doi: 10.1016/j.renene.2023.02.116
|
[4] |
桂树强, 程晓辉. 能源桩换热过程中结构响应原位试验研究[J]. 岩土工程学报, 2014, 36(6): 1087-1094.
GUI Shuqiang, CHENG Xiaohui. In-situ tests on structural responses of energy piles during heat exchanging process[J]. Chinese Journal of Geotechnical Engineering, 2014, 36(6): 1087-1094. (in Chinese)
|
[5] |
路宏伟, 蒋刚, 王昊, 等. 摩擦型能源桩荷载-温度现场联合测试与承载性状分析[J]. 岩土工程学报, 2017, 39(2): 334-342.
LU Hongwei, JIANG Gang, WANG Hao, et al. In-situ tests and thermo-mechanical bearing characteristics of friction geothermal energy piles[J]. Chinese Journal of Geotechnical Engineering, 2017, 39(2): 334-342. (in Chinese)
|
[6] |
郭易木, 钟鑫, 刘松玉, 等. 自由约束条件下分层地基中PHC能源桩热力响应原型试验研究[J]. 岩石力学与工程学报, 2019, 38(3): 582-590.
GUO Yimu, ZHONG Xin, LIU Songyu, et al. Prototype experimental investigation on the thermo-mechanical behaviors of free constrained full-scale PHC energy piles in multi-layer strata[J]. Chinese Journal of Rock Mechanics and Engineering, 2019, 38(3): 582-590. (in Chinese)
|
[7] |
BERGSTRÖM A, JAVED S, DIJKSTRA J. Field test of a floating thermal pile in sensitive clay[J]. Géotechnique, 2021, 71(4): 334-345. doi: 10.1680/jgeot.19.P.094
|
[8] |
方鹏飞, 高翔, 娄扬, 等. 夏季工况下正常服役地热能源桩承载性能原位试验研究[J]. 岩石力学与工程学报, 2021, 40(5): 1032-1042.
FANG Pengfei, GAO Xiang, LOU Yang, et al. Field test on the bearing behaviors of geothermal energy piles in natural service under the summer condition[J]. Chinese Journal of Rock Mechanics and Engineering, 2021, 40(5): 1032-1042. (in Chinese)
|
[9] |
CUNHA R P, BOURNE-WEBB P J. A critical review on the current knowledge of geothermal energy piles to sustainably climatize buildings[J]. Renewable and Sustainable Energy Reviews, 2022, 158: 112072. doi: 10.1016/j.rser.2022.112072
|
[10] |
REN L W, REN J Y, HAN Z P, et al. Field tests on the thermomechanical responses of PHC energy piles under cooling and loading conditions[J]. Acta Geotechnica, 2023, 18(1): 429-444. doi: 10.1007/s11440-022-01559-9
|
[11] |
建筑桩基技术规范: JGJ 94—2008[S]. 北京: 中国建筑工业出版社, 2008.
Technical Code for Building Pile Foundations: JGJ 94—2008[S]. Beijing: China Architecture & Building Press, 2008. (in Chinese)
|
[12] |
YOU S, CHENG X H, GUO H X, et al. Experimental study on structural response of CFG energy piles[J]. Applied Thermal Engineering, 2016, 96: 640-651. doi: 10.1016/j.applthermaleng.2015.11.127
|
[13] |
LIU H L, WANG C L, KONG G Q, et al. Ultimate bearing capacity of energy piles in dry and saturated sand[J]. Acta Geotechnica, 2019, 14(3): 869-879. doi: 10.1007/s11440-018-0661-6
|
[14] |
NG C W W, SHI C, GUNAWAN A, et al. Centrifuge modelling of energy piles subjected to heating and cooling cycles in clay[J]. Géotechnique, 2014, 4(4): 310-316. doi: 10.1680/geolett.14.00063
|
[15] |
FEI K, DAI D. Experimental and numerical study on the behavior of energy piles subjected to thermal cycles[J]. Advances in Civil Engineering, 2018: 3424528.
|
[16] |
ISHIHARA K. Liquefaction and flow failure during earthquakes[J]. Géotechnique, 1993, 43(3): 351-451. doi: 10.1680/geot.1993.43.3.351
|
[17] |
NG C W W, MU Q Y, ZHOU C. Effects of specimen preparation method on the volume change of clay under cyclic thermal loads[J]. Géotechnique, 2019, 69(2): 146-150. doi: 10.1680/jgeot.16.P.293
|
[18] |
MIMOUNI T, LALOUI L. Behaviour of a group of energy piles[J]. Canadian Geotechnical Journal, 2015, 52(12): 1913-1929. doi: 10.1139/cgj-2014-0403
|
[19] |
MURPHY K D, MCCARTNEY J S, HENRY K S. Evaluation of thermo-mechanical and thermal behavior of full-scale energy foundations[J]. Acta Geotechnica, 2015, 10(2): 179-195. doi: 10.1007/s11440-013-0298-4
|
[20] |
任连伟, 徐健, 孔纲强, 等. 冬季工况多次温度循环下微型钢管桩群桩热力响应特性现场试验[J]. 岩土工程学报, 2019, 41(11): 2053-2060. doi: 10.11779/CJGE201911010
REN Lianwei, XU Jian, KONG Gangqiang, et al. Field tests on thermal response characteristics of micro steel pile group under multiple temperature cycles in winter conditions[J]. Chinese Journal of Geotechnical Engineering, 2019, 41(11): 2053-2060. (in Chinese) doi: 10.11779/CJGE201911010
|
[21] |
王成龙, 刘汉龙, 孔纲强, 等. 不同刚度约束对能量桩应力和位移的影响研究[J]. 岩土力学, 2018, 39(11): 4261-4268.
WANG Chenglong, LIU Hanlong, KONG Gangqiang, et al. Study on stress and displacement of energy pile influenced by pile tip stiffness[J]. Rock and Soil Mechanics, 2018, 39(11): 4261-4268. (in Chinese)
|
[22] |
PENG H F, KONG G Q, LIU H L, et al. Thermo-mechanical behaviour of floating energy pile groups in sand[J]. Journal of Zhejiang University: Science A, 2018, 19(8): 638-649. doi: 10.1631/jzus.A1700460
|
[23] |
NG C W W, MA Q J. Energy pile group subjected to non-symmetrical cyclic thermal loading in centrifuge[J]. Géotechnique, 2019, 9(3): 1-5.
|
[24] |
NG C W W, FARIVAR A, GOMAA S M M H, et al. Centrifuge modeling of cyclic nonsymmetrical thermally loaded energy pile groups in clay[J]. Journal of Geotechnical and Geoenvironmental Engineering, ASCE, 2021, 147(12): 04021146. doi: 10.1061/(ASCE)GT.1943-5606.0002689
|
[25] |
FANG J C, KONG G Q, YANG Q. Group performance of energy piles under cyclic and variable thermal loading[J]. Journal of Geotechnical and Geoenvironmental Engineering ASCE, 2022, 148(8): 04022060. doi: 10.1061/(ASCE)GT.1943-5606.0002840
|
[26] |
GARNIER J, GAUDIN C, SPRINGMAN S M, et al. Catalogue of scaling laws and similitude questions in geotechnical centrifuge modelling[J]. International Journal of Physical Modelling in Geotechnics, 2007, 7(3): 1-23. doi: 10.1680/ijpmg.2007.070301
|
[27] |
NG C W W, YAU T L, LI J H. et al. New failure load criterion for large diameter bored piles in weathered geomaterials[J]. Journal of Geotechnical and Geoenvironmental Engineering, ASCE, 2001, 127(6): 488-498. doi: 10.1061/(ASCE)1090-0241(2001)127:6(488)
|
[28] |
HORIKOSHI K, RANDOLPH M F. On the definition of raft-soil stiffness ratio for rectangular rafts[J]. Géotechnique, 1997, 47(5): 1055-1061. doi: 10.1680/geot.1997.47.5.1055
|
[29] |
JOHANSEN O. Thermal Conductivity of Soils[D]. Trondheim: University of Trondheim, 1975.
|
[30] |
建筑基桩检测技术规范: JGJ 106—2014[S]. 北京: 中国建筑工业出版社, 2014.
Technical Code for Testing of Building Foundation Piles: JGJ 106—2014[S]. Beijing: China Architecture & Building Press, 2014. (in Chinese)
|