• 全国中文核心期刊
  • 中国科技核心期刊
  • 美国工程索引(EI)收录期刊
  • Scopus数据库收录期刊
ZOU Degao, LIU Jingmao, NING Fanwei, KONG Xianjing, CUI Gengyao, JIN Wei, ZHAN Zhenggang. Modification of scale effects of constitutive model parameters using super large-scale triaxial tests and in-situ monitoring data[J]. Chinese Journal of Geotechnical Engineering, 2024, 46(12): 2476-2483. DOI: 10.11779/CJGE20230667
Citation: ZOU Degao, LIU Jingmao, NING Fanwei, KONG Xianjing, CUI Gengyao, JIN Wei, ZHAN Zhenggang. Modification of scale effects of constitutive model parameters using super large-scale triaxial tests and in-situ monitoring data[J]. Chinese Journal of Geotechnical Engineering, 2024, 46(12): 2476-2483. DOI: 10.11779/CJGE20230667

Modification of scale effects of constitutive model parameters using super large-scale triaxial tests and in-situ monitoring data

More Information
  • Received Date: July 16, 2023
  • Available Online: May 29, 2024
  • The significant discrepancy between the calculated deformation values based on the traditional large-scale triaxial test results on rockfill materials (with the maximum particle size of 60 mm) and the monitoring data from the prototype dam raises concerns about the factors causing this difference and their respective influences. The scale effects (including scaling methods and particle size effects) of the mechanical properties of rockfill materials in five world-class high dams are investigated using the first super large-scale triaxial apparatus in China (with the maximum particle sizes of 200 mm and 160 mm) as well as a large-scale triaxial apparatus. The influences of the constitutive models (such as the Duncan E-B and E-μ models, and generalized plasticity model) on the calculation of dam deformations are examined. Additionally, by incorporating the monitoring data from Lianghekou and Aertashi dams, the rules of the scale effects and the rationality of constitutive models are explored, thereby clarifying that the errors related to the scaling methods, particle size effects and constitutive models are the primary causes of distortion in the calculations of high rockfill dams. The research findings indicate that under the same void ratio, the mixed-scale method tends to overestimate the modulus of rockfill materials compared to the parallel grading method. Moreover, the traditional large-scale triaxial tests based on the parallel grading method tend to overestimate the modulus of rockfill materials compared to the results obtained from the super large-scale triaxial tests, which effectively eliminate the size effects. Furthermore, the calculations based on the generalized plasticity model, particularly in terms of horizontal displacement, are more in line with the actual observations than those based on the Duncan E-B and E-μ models. Finally, a scale effect classification correction method for model parameters is proposed specifically for the Duncan E-B and E-μ models. The research outcomes contribute to a deeper understanding of the scale effects of rockfill materials and the influences of different constitutive models. They also provide reliable experimental and numerical calculation references for the deformation prediction in similar engineering projects.
  • [1]
    孔宪京, 邹德高. 紫坪铺面板堆石坝震害分析与数值模拟[M]. 北京: 科学出版社, 2014.

    KONG Xianjing, ZOU Degao. Seismic Damage Analysis and Numerical Simulation of Zipingpu Concrete Face Rockfill Dam[M]. Beijing: Science Press, 2014. (in Chinese)
    [2]
    MA H Q, CHI F D. Technical progress on researches for the safety of high concrete-faced rockfill dams[J]. Engineering, 2016, 2(3): 332-339. doi: 10.1016/J.ENG.2016.03.010
    [3]
    郭庆国. 粗粒土的工程特性及应用[M]. 郑州: 黄河水利出版社, 1999.

    GUO Qingguo. Engineering Character and Application of Aggregate Soil[M]. Zhengzhou: Yellow River Water Press, 1999. (in Chinese)
    [4]
    周伟, 常晓林, 马刚, 等. 堆石体缩尺效应研究进展分析[J]. 水电与抽水蓄能, 2017, 3(1): 17-23.

    ZHOU Wei, CHANG Xiaolin, MA Gang, et al. Analysis on the research development of rockfill scale effect[J]. Hydropower and Pumped Storage, 2017, 3(1): 17-23. (in Chinese)
    [5]
    武利强, 朱晟, 章晓桦, 等. 粗粒料试验缩尺效应的分析研究[J]. 岩土力学, 2016, 37(8): 2187-2197.

    WU Liqiang, ZHU Sheng, ZHANG Xiaohua, et al. Analysis of scale effect of coarse-grained materials[J]. Rock and Soil Mechanics, 2016, 37(8): 2187-2197. (in Chinese)
    [6]
    傅华, 韩华强, 凌华. 堆石料级配缩尺方法对其室内试验结果的影响[J]. 岩土力学, 2012, 33(9): 2645-2649.

    FU Hua, HAN Huaqiang, LING Hua. Effect of grading scale method on results of laboratory tests on rockfill materials[J]. Rock and Soil Mechanics, 2012, 33(9): 2645-2649. (in Chinese)
    [7]
    孔宪京, 宁凡伟, 刘京茂, 等. 基于超大型三轴仪的堆石料缩尺效应研究[J]. 岩土工程学报, 2019, 41(2): 255-261. doi: 10.11779/CJGE201902002

    KONG Xianjing, NING Fanwei, LIU Jingmao, et al. Scale effect of rockfill materials using super-large triaxial tests[J]. Chinese Journal of Geotechnical Engineering, 2019, 41(2): 255-261. (in Chinese) doi: 10.11779/CJGE201902002
    [8]
    沈珠江. 鲁布革心墙堆石坝变形的反馈分析[J]. 岩土工程学报, 1994, 16(3): 1-13. doi: 10.3321/j.issn:1000-4548.1994.03.001

    SHEN Zhujiang. Feedback analysis of deformation of Lubuge core rockfill dam[J]. Chinese Journal of Geotechnical Engineering, 1994, 16(3): 1-13. (in Chinese) doi: 10.3321/j.issn:1000-4548.1994.03.001
    [9]
    土工试验方法标准: GB/T 50123—2019[S]. 北京: 中国计划出版社, 2019.

    Standard for Geotechnical Tesing Method: GB/T 50123—2019[S]. Beijing: China Planning Press, 2019. (in Chinese)
    [10]
    MARSCHI N D, CHAN C K, SEED H B. Evaluation of properties of rockfill materials[J]. Journal of the Soil Mechanics and Foundations Division, 1972, 98(1): 95-114. doi: 10.1061/JSFEAQ.0001735
    [11]
    VARADARAJAN A, SHARMA K G, VENKATACHALAM K, et al. Testing and modeling two rockfill materials[J]. Journal of Geotechnical and Geoenvironmental Engineering, 2003, 129(3): 206-218. doi: 10.1061/(ASCE)1090-0241(2003)129:3(206)
    [12]
    BOLTON M D, LAU C K. Scale effects arising from particle size[C]//Proceedings of the International Conference on Geotechnical Centrifuge Modeling. Paris, 1988: 127-131.
    [13]
    混凝土面板堆石坝设计规范: DL/T 5016—2011[S]. 北京: 中国电力出版社, 2011.

    Design Code for Concrete Face Rockfill Dams: DL/T 5016—2011[S]. Beijing: China Electric Power Press, 2011. (in Chinese)
    [14]
    NING F W, LIU J M, KONG X, et al. Critical state and grading evolution of rockfill material under different triaxial compression tests[J]. International Journal of Geomechanics, 2020, 20: 04019154. doi: 10.1061/(ASCE)GM.1943-5622.0001550
    [15]
    孔宪京, 刘京茂, 邹德高. 堆石料尺寸效应研究面临的问题及多尺度三轴试验平台[J]. 岩土工程学报, 2016, 38(11): 1941-1947. doi: 10.11779/CJGE201611002

    KONG Xianjing, LIU Jingmao, ZOU Degao. Scale effect of rockfill and multiple-scale triaxial test platform[J]. Chinese Journal of Geotechnical Engineering, 2016, 38(11): 1941-1947. (in Chinese) doi: 10.11779/CJGE201611002
    [16]
    汪小刚. 高土石坝几个问题探讨[J]. 岩土工程学报, 2018, 40(2): 203-222. doi: 10.11779/CJGE201802001

    WANG Xiaogang. Discussion on some problems observed in high earth-rockfill dams[J]. Chinese Journal of Geotechnical Engineering, 2018, 40(2): 203-222. (in Chinese) doi: 10.11779/CJGE201802001
    [17]
    李翀, 何昌荣, 王琛, 等. 粗粒料大型三轴试验的尺寸效应研究[J]. 岩土力学, 2008, 29(增刊1): 563-566.

    LI Chong, HE Changrong, WANG Chen, et al. Study on size effect of large-scale triaxial test of coarse grained materials[J]. Rock and Soil Mechanics, 2008, 29(S1): 563-566. (in Chinese)
    [18]
    XIAO Y, LIU H L, CHEN Y M, et al. Strength and deformation of rockfill material based on large-scale triaxial compression tests: Ⅰ influences of density and pressure[J]. Journal of Geotechnical and Geoenvironmental Engineering, 2014, 140(12): 4014070. doi: 10.1061/(ASCE)GT.1943-5606.0001176
    [19]
    陈生水, 凌华, 米占宽, 等. 大石峡砂砾石坝料渗透特性及其影响因素研究[J]. 岩土工程学报, 2019, 41(1): 26-31. doi: 10.11779/CJGE201901002

    CHEN Shengshui, LING Hua, MI Zhankuan, et al. Experimental study on permeability and its influencing factors for sandy gravel of Dashixia Dam[J]. Chinese Journal of Geotechnical Engineering, 2019, 41(1): 26-31. (in Chinese) doi: 10.11779/CJGE201901002
    [20]
    宁凡伟. 基于超大型三轴仪的筑坝粗粒料缩尺效应研究[D]. 大连理工大学, 2020.

    NING Fanwei. Research on the Scale Effect of Coarse Grained Materials Based on Super Large Triaxial Apparatus[D]. Dalian: Dalian University of Technology, 2020. (in Chinese)
    [21]
    LE PEN L M, POWRIE W, ZERVOS A, et al. Dependence of shape on particle size for a crushed rock railway ballast[J]. Granular Matter, 2013, 15(6): 849-861. doi: 10.1007/s10035-013-0437-5
    [22]
    刘宝琛, 张家生, 杜奇中, 等. 岩石抗压强度的尺寸效应[J]. 岩石力学与工程学报, 1998, 17(6): 611-614.

    LIU Baochen, ZHANG Jiasheng, DU Qizhong, et al. A study of size effect for compression strength of rock[J]. Chinese Journal of Rock Mechanics and Engineering, 1998, 17(6): 611-614. (in Chinese)
    [23]
    LIU J M, ZOU D G, NING F W, et al. A unified constitutive model for instantaneous elastic-plastic and time-dependent creep behaviour of gravelly soils under complex loading[J]. Canadian Geotechnical Journal, 2023, 60(11): 1613-1628.
    [24]
    LIU J M, ZOU D G, KONG X. A two-mechanism soil-structure interface model for three-dimensional cyclic loading[J]. International Journal for Numerical and Analytical Methods in Geomechanics, 2020, 44: 2042-2069.
    [25]
    宁凡伟, 孔宪京, 邹德高, 等. 筑坝材料缩尺效应及其对阿尔塔什面板坝变形及应力计算的影响[J]. 岩土工程学报, 2021, 43(2): 263-270. doi: 10.11779/CJGE202102006

    NING Fanwei, KONG Xianjing, ZOU Degao, et al. Scale effect of rockfill materials and its influences on deformation and stress analysis of Aertashi CFRD[J]. Chinese Journal of Geotechnical Engineering, 2021, 43(2): 263-270. (in Chinese) doi: 10.11779/CJGE202102006
    [26]
    邹德高, 姜秋婷, 刘京茂, 等. 超高土石坝心墙孔压不均匀分布特征及其机理研究[J]. 水利学报, 2022, 53(12): 1467-1475, 1489.

    ZOU Degao, JIANG Qiuting, LIU Jingmao, et al. Characteristics and mechanism of inhomogeneous pore pressure of core wall in super-high rockfill dam[J]. Journal of Hydraulic Engineering, 2022, 53(12): 1467-1475, 1489. (in Chinese)
    [27]
    章为民, 沈珠江. 混凝土面板堆石坝三维弹塑性有限元分析[J]. 水利学报, 1992, 23(4): 75-78.

    ZHANG Weimin, SHEN Zhujiang. Three-dimensional elastic-plastic finite element analysis of concrete face rockfill dam[J]. Journal of Hydraulic Engineering, 1992, 23(4): 75-78. (in Chinese)

Catalog

    Article views (298) PDF downloads (131) Cited by()
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return