• Indexed in Scopus
  • Source Journal for Chinese Scientific and Technical Papers and Citations
  • Included in A Guide to the Core Journal of China
  • Indexed in Ei Compendex
SHI Zhenhao, TU Zizhen, QIAN Jiangu, HUANG Maosong. Methods for evaluating sample disturbance of deep clayey soil in Shanghai[J]. Chinese Journal of Geotechnical Engineering, 2024, 46(9): 1880-1888. DOI: 10.11779/CJGE20230533
Citation: SHI Zhenhao, TU Zizhen, QIAN Jiangu, HUANG Maosong. Methods for evaluating sample disturbance of deep clayey soil in Shanghai[J]. Chinese Journal of Geotechnical Engineering, 2024, 46(9): 1880-1888. DOI: 10.11779/CJGE20230533

Methods for evaluating sample disturbance of deep clayey soil in Shanghai

More Information
  • Received Date: June 11, 2023
  • Available Online: March 24, 2024
  • To accurately understand the in situ mechanical properties of soils, it is necessary to evaluate the degree of sample disturbance. The existing sample disturbance evaluation methods mostly focus on shallow soils, while the counterpart for deep clayey soil is needed. This work investigates the applicability of the existing methods for evaluating sample disturbance of deep clayey soil, via conducting laboratory one-dimensional consolidation and shear wave velocity tests on Shanghai deep clayey soil, performing constitutive modeling of structured clay, and comparing test data in the literatures. A new sample disturbance index is proposed, which is based on the shear wave velocity and excludes the influences of stress state and void ratio. The performance of the disturbance index is assessed against the test results from this study and the literatures. The results show: (1) There is a significant difference in sampling disturbance between the block samples and borehole samples of Shanghai deep clayey soil. (2) For the soil samples with the same disturbance, the existing index ∆e/e0 increases with the increase of the sampling depth, which may overestimate the sampling disturbance of deep clayey soil, and cannot reflect the above-mentioned difference in the disturbance degree. (3) The disturbance index Vs, lab/Vs, in situ (i.e., the ratio of shear wave velocity measured in the laboratory to that in situ), cannot reflect the difference in the disturbance degree of Shanghai deep clayey soil caused by different sampling methods, and its application to other clays gives a relatively large dispersion along depth. (4) The proposed disturbance index can overcome the influences of sampling depth, and for the clayey soil in the same region, it can uniformly quantify the disturbance degree caused by sampling.

  • [1]
    盛佳韧. 上海黏土力学特性综合试验研究及本构模拟[D]. 上海: 上海交通大学, 2012.

    SHENG Jiaren. Laboratory Tests and Constitutive Modeling on the Mechanical Behavior of Shanghai Clays[D]. Shanghai: Shanghai Jiao Tong University, 2012. (in Chinese)
    [2]
    钱建固, 杜子博. 纯主应力轴旋转下饱和软黏土的循环弱化及非共轴性[J]. 岩土工程学报, 2016, 38(8): 1381-1390. doi: 10.11779/CJGE201608004

    QIAN Jiangu, DU Zibo. Cyclic degradation and non-coaxiality of saturated soft clay subjected to pure rotation of principal stress axis[J]. Chinese Journal of Geotechnical Engineering, 2016, 38(8): 1381-1390. (in Chinese) doi: 10.11779/CJGE201608004
    [3]
    SCHMERTMANN J H. The undisturbed consolidation behavior of clay[J]. Transportation, ASCE, 1955, 120: 1201-1233.
    [4]
    李涛, 钱寿易. 土样扰动影响的评价及其先期固结压力的确定[J]. 岩土工程学报, 1987, 9(5): 21-30. http://cge.nhri.cn/cn/article/id/9091

    LI Tao, QIAN Shouyi. Evaluation of soil sample disturbance and determination of its preconsolidation pressure[J]. Chinese Journal of Geotechnical Engineering, 1987, 9(5): 21-30. (in Chinese) http://cge.nhri.cn/cn/article/id/9091
    [5]
    ANDERSEN A, KOLSTAD P. The KGI 54 mm samplers for undisturbed sampling of clays and representative sampling of coarser materials[C]// Proceedings of the International Symposium on Soil Sampling, Singapore, 1979: 13-21.
    [6]
    LACASSE S, BERRE T. Triaxial testing methods for soils[J]. Advanced Triaxial Testing of Soil and Rock, ASTM STP, 1988, 977: 264-289.
    [7]
    LUNNE T, BERRE T, STRANDVIK S. Sample disturbance effects in soft low plastic Norwegian clay[C]// Proceedings of the Conference on Recent Developments in Soil and Pavement Mechanics: Rio de Janeiro, 1997: 81-102.
    [8]
    HVORSLEV, M. Physical components of the shear strength of saturated clays[C]// Proceedings of the ASCE Research Conference on Shear Strength of Cohesive Soils, Boulder, Colorado, 1960: 169-273.
    [9]
    LADD C C, LAMBE T W. The strength of "undisturbed" clay determined from undrained tests[C]// Proceedings of the Symposium on Laboratory Shear Testing of Soils, Detroit, 1963: 342-371.
    [10]
    王立忠, 李玲玲. 结构性土体的施工扰动及其对沉降的影响[J]. 岩土工程学报, 2007, 29(5): 697-704. http://cge.nhri.cn/cn/article/id/12487

    WANG Lizhong, LI Lingling. Field disturbance of structured clay and its effect on settlements of soil foundation[J]. Chinese Journal of Geotechnical Engineering, 2007, 29(5): 697-704. (in Chinese) http://cge.nhri.cn/cn/article/id/12487
    [11]
    刘维正, 石名磊, 缪林昌. 太湖湖沼相天然沉积土结构性评价[J]. 岩土工程学报, 2010, 32(10): 1616-1620. http://cge.nhri.cn/cn/article/id/8374

    LIU Weizheng, SHI Minglei, MIAO Linchang. Evaluation of soil structural charactenistics of Taihu lacustrine-swamp natural sedimentary soils[J]. Chinese Journal of Geotechnical Engineering, 2010, 32(10): 1616-1620. (in Chinese) http://cge.nhri.cn/cn/article/id/8374
    [12]
    邓永锋, 刘松玉. 扰动对软土强度影响规律研究[J]. 岩石力学与工程学报, 2007, 26(9): 1940-1944. https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX200709028.htm

    DENG Yongfeng, LIU Songyu. Effect of sample disturbance on soft soil strength[J]. Chinese Journal of Rock Mechanics and Engineering, 2007, 26(9): 1940-1944. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX200709028.htm
    [13]
    DEJONG J T, KRAGE C P, ALBIN B M, et al. Work-based framework for sample quality evaluation of low plasticity soils[J]. Journal of Geotechnical and Geoenvironmental Engineering, 2018, 144(10): 04018074. doi: 10.1061/(ASCE)GT.1943-5606.0001941
    [14]
    KARLSRUD K, HERNANDEZ-MARTINEZ F G. Strength and deformation properties of Norwegian clays from laboratory tests on high-quality block samples[J]. Canadian Geotechnical Journal, 2013, 50(12): 1273-1293.
    [15]
    周燕国, 陈云敏, 黄博, 等. 利用弯曲元测量土体表层剪切波速的初步试验[J]. 岩土工程学报, 2008, 30(12): 1883-1887. http://cge.nhri.cn/cn/article/id/13081

    ZHOU Yanguo, CHEN Yunmin, HUANG Bo, et al. Preliminary tests of measuring shear wave velocity on soil surface using bender elements[J]. Chinese Journal of Geotechnical Engineering, 2008, 30(12): 1883-1887. (in Chinese) http://cge.nhri.cn/cn/article/id/13081
    [16]
    LANDON M M, DEGROOT D J, SHEAHAN T C. Nondestructive sample quality assessment of a soft clay using shear wave velocity[J]. Journal of Geotechnical and Geoenvironmental Engineering, 2007, 133(4): 424-432.
    [17]
    DONOHUE S, LONG M. Assessment of sample quality in soft clay using shear wave velocity and suction measurements[J]. Géotechnique, 2010, 60(11): 883-889.
    [18]
    FERREIRA C, DA FONSECA A V, NASH D F T. Shear wave velocities for sample quality assessment on a residual soil[J]. Soils and Foundations, 2011, 51(4): 683-692.
    [19]
    柳艳华, 黄茂松, 李帅. 循环荷载下结构性软黏土的各向异性边界面模型[J]. 岩土工程学报, 2010, 32(7): 1065-1071. http://cge.nhri.cn/cn/article/id/13452

    LIU Yanhua, HUANG Maosong, LI Shuai. An anisotropic bounding surface model for structured soft clay under cyclic loading[J]. Chinese Journal of Geotechnical Engineering, 2010, 32(7): 1065-1071. (in Chinese) http://cge.nhri.cn/cn/article/id/13452
    [20]
    土工试验方法标准: GB/T 50123—2019[S]. 北京: 中国计划出版社, 2019.

    Standard for Geotechnical Testing Method: GB/T 50123—2019[S]. Beijing: China Planning Press, 2019. (in Chinese)
    [21]
    尹振宇. 天然软黏土的弹黏塑性本构模型: 进展及发展[J]. 岩土工程学报, 2011, 33(9): 1357-1369. http://cge.nhri.cn/cn/article/id/14176

    YIN Zhenyu. Elastic viscoplastic models for natural soft clay: review and development[J]. Chinese Journal of Geotechnical Engineering, 2011, 33(9): 1357-1369. (in Chinese) http://cge.nhri.cn/cn/article/id/14176
    [22]
    陈盼, 韦昌富, 李永和, 等. 结构性黏土的压缩变形特性[J]. 岩土力学, 2012, 33(增刊2): 29-36. https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX2012S2004.htm

    CHEN Pan, WEI Changfu, LI Yonghe, et al. Compression deformation characteristics of structural clays[J]. Rock and Soil Mechanics, 2012, 33(S2): 29-36. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX2012S2004.htm
    [23]
    杨同帅. 上海软黏土小应变力学特性试验及本构模拟[D]. 上海: 上海交通大学, 2019.

    YANG Tongshuai. Experimental Study on Small Strain Stiffness and Constitutive Model of Shanghai Soft Soils[D]. Shanghai: Shanghai Jiao Tong University, 2019. (in Chinese)
    [24]
    LUNNE T, BERRE T, ANDERSEN K H, et al. Erratum: effects of sample disturbance and consolidation procedures on measured shear strength of soft marine Norwegian clays[J]. Canadian Geotechnical Journal, 2007, 44(1): 111-111.
    [25]
    LEE J M, CHUNG S G, KWEON H J, et al. Effects of fixed-piston sampler fixity on clay sample quality[J]. Proceedings of the Institution of Civil Engineers-Geotechnical Engineering, 2016, 169(6): 554-566.
    [26]
    顾晓强, 吴瑞拓, 梁发云, 等. 上海土体小应变硬化模型整套参数取值方法及工程验证[J]. 岩土力学, 2021, 42(3): 833-845. https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX202103026.htm

    GU Xiaoqiang, WU Ruituo, LIANG Fayun, et al. On HSS model parameters for Shanghai soils with engineering verification[J]. Rock and Soil Mechanics, 2021, 42(3): 833-845. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX202103026.htm
    [27]
    ZAPATA-MEDINA D G. Evaluation of Dynamic Soil Parameter Changes Due to Construction-Induced Stresses[D]. Evanston: Northwestern University, 2012.
    [28]
    HARDIN B O, BLACK W L. Closure to "Vibration modulus of normally consolidated clay"[J]. Journal of the Soil Mechanics and Foundations Division, 1969, 95(6): 1531-1537.
    [29]
    ELBEGGO D, ETHIER Y, DUBÉ J S, et al. Critical insights in laboratory shear wave velocity correlations of clays[J]. Canadian Geotechnical Journal, 2022, 59(6): 935-951.
  • Related Articles

    [1]ZHOU Yanguo, ZHOU Xinhui, SANG Yijia, SHI Anchi, CHEN Yunmin. Shear wave velocity-based evaluation of liquefaction resistance of in-situ sand with aging effects[J]. Chinese Journal of Geotechnical Engineering, 2023, 45(S2): 19-24. DOI: 10.11779/CJGE2023S20047
    [2]CHEN Guo-xing, SUN Su-yu, WU Qi, HANG Tian-zhu. Shear wave velocity-based new procedure for assessing seismic liquefaction triggering of sand-gravel soils[J]. Chinese Journal of Geotechnical Engineering, 2022, 44(10): 1763-1771. DOI: 10.11779/CJGE202210001
    [3]SUN Rui, YUAN Xiao-ming. Depth-consistent vs-based approach for soil liquefaction evaluation[J]. Chinese Journal of Geotechnical Engineering, 2019, 41(3): 439-447. DOI: 10.11779/CJGE201903005
    [4]DONG Fei-fan, CHEN Guo-xing, JIN Dan-dan. Statistical relation between shear wave velocity and depth of soils in three basins in coastal area of Fujian province[J]. Chinese Journal of Geotechnical Engineering, 2013, 35(zk2): 145-151.
    [5]XU Xiao-min, LING Dao-sheng, HUANG Bo, CHEN Yun-min. Determination of shear wave velocity in granular materials by shear vibration within discrete element simulation[J]. Chinese Journal of Geotechnical Engineering, 2011, 33(9): 1462-1468.
    [6]Relationship between shear wave velocity and depth of conventional soils[J]. Chinese Journal of Geotechnical Engineering, 2010, 32(7).
    [7]SUN Rui, YUAN Xiaoming, LIU Xiaojian. Effects of dynamic shear modulus ratio and velocity on surface ground motion and their equivalent relations[J]. Chinese Journal of Geotechnical Engineering, 2009, 31(8): 1267-1274.
    [8]ZHOU Yanguo, CHEN Yunmin, HUANG Bo, SHAMOTO Yasuhiro. Preliminary tests of measuring shear wave velocity on soil surface using bender elements[J]. Chinese Journal of Geotechnical Engineering, 2008, 30(12): 1883-1887.
    [9]JI Meixiu, CHEN Yunmin, HUANG Bo. Method for precisely determining shear wave velocity of soil from bender element tests[J]. Chinese Journal of Geotechnical Engineering, 2003, 25(6): 732-736.
    [10]WANG Wenshao. Utilization of shear wave velocity in assessment of liquefaction potential of saturated sand under level ground during earthquakes[J]. Chinese Journal of Geotechnical Engineering, 2001, 23(6): 655-658.
  • Cited by

    Periodical cited type(1)

    1. 钱晓华, 李汶蔚, 王晓睿. 郑州地区黏质粉土与砂土地层降水试验对比及系数修正. 华北水利水电大学学报(自然科学版).

    Other cited types(0)

Catalog

    HUANG Maosong

    1. On this Site
    2. On Google Scholar
    3. On PubMed
    Article views (591) PDF downloads (113) Cited by(1)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return