Citation: | XUE Yi, ZHANG Zhihao, LIU Jia, CAI Chengzheng, ZHANG Zhizhen, GAO Feng, SHI Xuyang, ZHANG Yun. Acoustic emission evolution characteristics and constitutive model for damage of granite after high-temperature heating and liquid nitrogen cold shock treatment[J]. Chinese Journal of Geotechnical Engineering, 2024, 46(9): 1849-1859. DOI: 10.11779/CJGE20230529 |
[1] |
王贵玲, 刘彦广, 朱喜, 等. 中国地热资源现状及发展趋势[J]. 地学前缘, 2020, 27(1): 1-9. https://www.cnki.com.cn/Article/CJFDTOTAL-DXQY202001002.htm
WANG Guiling, LIU Yanguang, ZHU Xi, et al. The status and development trend of geothermal resources in China[J]. Earth Science Frontiers, 2020, 27(1): 1-9. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-DXQY202001002.htm
|
[2] |
李德威, 王焰新. 干热岩地热能研究与开发的若干重大问题[J]. 地球科学: 中国地质大学学报, 2015(11): 1858-1869. https://www.cnki.com.cn/Article/CJFDTOTAL-DQKX201511008.htm
LI Dewei, WANG Yanxin. Major issues of research and development of hot dry rock geothermal energy[J]. Earth Science: Journal of China University of Geosciences, 2015(11): 1858-1869. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-DQKX201511008.htm
|
[3] |
廖志杰, 万天丰, 张振国. 增强型地热系统: 潜力大、开发难[J]. 地学前缘, 2015, 22(1): 335-344. https://www.cnki.com.cn/Article/CJFDTOTAL-DXQY202001023.htm
LIAO Zhijie, WAN Tianfeng, ZHANG Zhenguo. The enhanced geothermal system(EGS): huge capacity and difficult exploitation[J]. Earth Science Frontiers, 2015, 22(1): 335-344. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-DXQY202001023.htm
|
[4] |
许天福, 袁益龙, 姜振蛟, 等. 干热岩资源和增强型地热工程: 国际经验和我国展望[J]. 吉林大学学报(地球科学版), 2016, 46(4): 1139-1152. https://www.cnki.com.cn/Article/CJFDTOTAL-CCDZ201604012.htm
XU Tianfu, YUAN Yilong, JIANG Zhenjiao, et al. Hot dry rock and enhanced geothermal engineering: international experience and China prospect[J]. Journal of Jilin University (Earth Science Edition), 2016, 46(4): 1139-1152. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-CCDZ201604012.htm
|
[5] |
曾义金. 干热岩热能开发技术进展与思考[J]. 石油钻探技术, 2015, 43(2): 1-7. https://www.cnki.com.cn/Article/CJFDTOTAL-SYZT201502001.htm
ZENG Yijin. Technical progress and thinking for development of hot dry rock (HDR) geothermal resources[J]. Petroleum Drilling Techniques, 2015, 43(2): 1-7. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-SYZT201502001.htm
|
[6] |
BOUDET H, CLARKE C, BUGDEN D, et al. "Fracking" controversy and communication: Using national survey data to understand public perceptions of hydraulic fracturing[J]. Energy Policy, 2014, 65: 57-67. doi: 10.1016/j.enpol.2013.10.017
|
[7] |
尹欣欣, 蒋长胜, 翟鸿宇, 等. 全球干热岩资源开发诱发地震活动和灾害风险管控[J]. 地球物理学报, 2021, 64(11): 3817-3836. https://www.cnki.com.cn/Article/CJFDTOTAL-DQWX202111002.htm
YIN Xinxin, JIANG Changsheng, ZHAI Hongyu, et al. Review of induced seismicity and disaster risk control in dry hot rock resource development worldwide[J]. Chinese Journal of Geophysics, 2021, 64(11): 3817-3836. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-DQWX202111002.htm
|
[8] |
董硕, 沙松, 蒙世仟, 等. 液氮冷却作用下三类高温岩石力学性能试验研究[J]. 东北大学学报(自然科学版), 2021, 42(11): 1591-1599. https://www.cnki.com.cn/Article/CJFDTOTAL-DBDX202111011.htm
DONG Shuo, SHA Song, MENG Shiqian, et al. Experimental investigation of mechanical properties of three types of high temperature rocks after liquid nitrogen cooling[J]. Journal of Northeastern University (Natural Science), 2021, 42(11): 1591-1599. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-DBDX202111011.htm
|
[9] |
SU S, HOU P, GAO F, et al. Changes in mechanical properties and fracture behaviors of heated marble subjected to liquid nitrogen cooling[J]. Engineering Fracture Mechanics, 2022, 261: 108256. doi: 10.1016/j.engfracmech.2022.108256
|
[10] |
吴星辉, 李鹏, 郭奇峰, 等. 热损伤岩石物理力学特性演化机制研究进展[J]. 工程科学学报, 2022, 44(5): 827-839. https://www.cnki.com.cn/Article/CJFDTOTAL-BJKD202205001.htm
WU Xinghui, LI Peng, GUO Qifeng, et al. Research progress on the evolution of physical and mechanical properties of thermally damaged rock[J]. Chinese Journal of Engineering, 2022, 44(5): 827-839. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-BJKD202205001.htm
|
[11] |
ENAYATPOUR S, PATZEK T. Thermal shock in reservoir rock enhances the hydraulic fracturing of gas shales[C]// SPE/AAPG/SEG Unconventional Resources Technology Conference, OnePetro, 2013.
|
[12] |
FINNIE I, COOPER G A, BERLIE J. Fracture propagation in rock by transient cooling[C]// International Journal of Rock Mechanics and Mining Sciences & Geomechanics Abstracts, Pergamon, 1979, 16(1): 11-21.
|
[13] |
WU X G, HUANG Z W, SONG H Y, et al. Variations of physical and mechanical properties of heated granite after rapid cooling with liquid nitrogen[J]. Rock Mechanics and Rock Engineering, 2019, 52(7): 2123-2139. doi: 10.1007/s00603-018-1727-3
|
[14] |
蔡承政, 李根生, 黄中伟, 等. 液氮压裂中液氮对岩石破坏的影响试验[J]. 中国石油大学学报(自然科学版), 2014, 38(4): 98-103. https://www.cnki.com.cn/Article/CJFDTOTAL-SYDX201404015.htm
CAI Chengzheng, LI Gensheng, HUANG Zhongwei, et al. Experimental study on effect of liquid nitrogen on rock failure during cryogenic nitrogen fracturing[J]. Journal of China University of Petroleum (Edition of Natural Science), 2014, 38(4): 98-103. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-SYDX201404015.htm
|
[15] |
ZHANG S K, HUANG Z W, ZHANG H Y, et al. Experimental study of thermal-crack characteristics on hot dry rock impacted by liquid nitrogen jet[J]. Geothermics, 2018, 76: 253-260. doi: 10.1016/j.geothermics.2018.08.002
|
[16] |
张伟, 曲占庆, 郭天魁, 等. 热应力影响下干热岩水压致裂数值模拟[J]. 岩土力学, 2019, 40(5): 2001-2008. https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201905045.htm
ZHANG Wei, QU Zhanqing, GUO Tiankui, et al. Numerical simulation of hydraulic fracturing in hot dry rocks under the influence of thermal stress[J]. Rock and Soil Mechanics, 2019, 40(5): 2001-2008. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201905045.htm
|
[17] |
黄中伟, 位江巍, 李根生, 等. 液氮冻结对岩石抗拉及抗压强度影响试验研究[J]. 岩土力学, 2016, 37(3): 694-700, 834. https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201603012.htm
HUANG Zhongwei, WEI Jiangwei, LI Gensheng, et al. An experimental study of tensile and compressive strength of rocks under cryogenic nitrogen freezing[J]. Rock and Soil Mechanics, 2016, 37(3): 694-700, 834. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201603012.htm
|
[18] |
YUAN H, SUN Q, GENG J, et al. Acoustic emission characteristics of high-temperature granite through different cooling paths[J]. Geomechanics and Geophysics for Geo-Energy and Geo-Resources, 2022, 8(3): 97. doi: 10.1007/s40948-022-00407-0
|
[19] |
郭奇峰, 钱志海, 潘继良, 等. 高温花岗岩热冲击后力学特性及损伤演化规律研究[J]. 工程科学学报, 2022, 44(10): 1746-1754. https://www.cnki.com.cn/Article/CJFDTOTAL-BJKD202210012.htm
GUO Qifeng, QIAN Zhihai, PAN Jiliang, et al. Mechanical properties and damage evolution of granite under high temperature thermal shock[J]. Chinese Journal of Engineering, 2022, 44(10): 1746-1754. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-BJKD202210012.htm
|
[20] |
SHA S, RONG G, CHEN Z H, et al. Experimental evaluation of physical and mechanical properties of geothermal reservoir rock after different cooling treatments[J]. Rock Mechanics and Rock Engineering, 2020, 53(11): 4967-4991. doi: 10.1007/s00603-020-02200-5
|
[21] |
GAUTAM P K, VERMA A K, SHARMA P, et al. Evolution of thermal damage threshold of jalore granite[J]. Rock Mechanics and Rock Engineering, 2018, 51(9): 2949-2956. doi: 10.1007/s00603-018-1493-2
|
[22] |
陈世万, 杨春和, 刘鹏君, 等. 热损伤后北山花岗岩裂隙演化及渗透率试验研究[J]. 岩土工程学报, 2017, 39(8): 1493-1500. doi: 10.11779/CJGE201708017
CHEN Shiwan, YANG Chunhe, LIU Pengjun, et al. Evolution of cracks and permeability of granites suffering from different thermal damages[J]. Chinese Journal of Geotechnical Engineering, 2017, 39(8): 1493-1500. (in Chinese) doi: 10.11779/CJGE201708017
|
[23] |
刘泉声, 许锡昌. 温度作用下脆性岩石的损伤分析[J]. 岩石力学与工程学报, 2000, 19(4): 408-411. https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX200004002.htm
LIU Quansheng, XU Xichang. Damage analysis of brittle rock at high temperature[J]. Chinese Journal of Rock Mechanics and Engineering, 2000, 19(4): 408-411. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX200004002.htm
|
[24] |
蒋浩鹏, 姜谙男, 杨秀荣. 基于Weibull分布的高温岩石统计损伤本构模型及其验证[J]. 岩土力学, 2021, 42(7): 1894-1902. https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX202107014.htm
JIANG Haopeng, JIANG Annan, YANG Xiurong. Statistical damage constitutive model of high temperature rock based on Weibull distribution and its verification[J]. Rock and Soil Mechanics, 2021, 42(7): 1894-1902. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX202107014.htm
|
[25] |
GUTENBERG B, RICHTER C F. Earthquake magnitude, intensity, energy, and acceleration: (Second paper)[J]. Bulletin of the Seismological Society of America, 1956, 46(2): 105-145. doi: 10.1785/BSSA0460020105
|
[26] |
LIU X, HAN M, HE W, et al. A new b value estimation method in rock acoustic emission testing[J]. Journal of Geophysical Research: Solid Earth, 2020, 125(12): e2020JB019658. doi: 10.1029/2020JB019658
|
[27] |
CHEN D, LIU X, HE W, et al. Effect of attenuation on amplitude distribution and b value in rock acoustic emission tests[J]. Geophysical Journal International, 2022, 229(2): 933-947. doi: 10.1093/gji/ggab480
|
[28] |
PICKERING G, BULL J M, SANDERSON D J. Sampling power-law distributions[J]. Tectonophysics, 1995, 248(1/2): 1-20.
|