Citation: | YU Zhixiang, LUO Hongjin, ZHANG Lijun, LUO Liru, JIN Yuntao, ZHAO Lei. Coupling analysis method for flexible debris flow barriers considering water blocking and permeability effects[J]. Chinese Journal of Geotechnical Engineering, 2024, 46(8): 1695-1702. DOI: 10.11779/CJGE20230517 |
[1] |
朱颖彦, 潘军宇, 李朝月, 等. 中巴喀喇昆仑公路冰川泥石流[J]. 山地学报, 2022, 40(1): 71-83. https://www.cnki.com.cn/Article/CJFDTOTAL-SDYA202201006.htm
ZHU Yingyan, PAN Junyu, LI Chaoyue, et al. Glacier debris flow along China-Pakistan International Karakoram Highway (KKH)[J]. Mountain Research, 2022, 40(1): 71-83. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-SDYA202201006.htm
|
[2] |
刘波, 牛运华, 王科, 等. 乌东德水电站白滩沟泥石流特性分析与防治措施[J]. 岩土工程学报, 2016, 38(增刊1): 225-230. doi: 10.11779/CJGE2016S1042
LIU Bo, NIU Yunhua, WANG Ke, et al. Characteristic analysis and control measures for debris flow in Baitan Gully of Wudongde Hydropower Station[J]. Chinese Journal of Geotechnical Engineering, 2016, 38(S1): 225-230. (in Chinese) doi: 10.11779/CJGE2016S1042
|
[3] |
刘成清, 许城杰, 陈鑫, 等. 泥石流柔性防护网结构破坏原因分析与设计对策[J]. 水利与建筑工程学报, 2017, 15(5): 6-11.
LIU Chenqing, XU Chenjie, CHENG Xin, et al. Failure cause analysis and countermeasures design of flexible debris flow protection system[J]. Journal of Water Resources and Architectural Engineering, 2017, 15(5): 6-11. (in Chinese)
|
[4] |
肖思友, 苏立君, 姜元俊. 碎屑流冲击柔性网的离散元仿真研究[J]. 岩土工程学报, 2019, 41(3): 526-533. doi: 10.11779/CJGE201903015
XIAO Siyou, SU Lijun, JIANG Yuanjun. Numerical investigation on flexible barriers impacted by dry granular flows using DEM modeling[J]. Chinese Journal of Geotechnical Engineering, 2019, 41(3): 526-533(in Chinese) doi: 10.11779/CJGE201903015
|
[5] |
SZE H Y, HO K S, KOO C H, et al. Design of flexible barriers against sizeable landslides in Hong Kong[J]. HKIE Transactions Hong Kong Institution of Engineers, 2018, 25(2): 115-128.
|
[6] |
韩玫. 汶川震区"宽缓"与"窄陡"沟道型泥石流致灾机理研究[D]. 成都: 西南交通大学, 2016.
HAN Mei. Hazard Mechanism Research of Wide-Gentle and Narrow-Steep Channels Debris Flow in Wenchuan Earthquake Region[D]. Chengdu: Southwest Jiaotong University, 2016. (in Chinese)
|
[7] |
IVERSON R M. The physics of debris flows[J]. Reviews of Geophysics, 1997, 35(3): 245-296. doi: 10.1029/97RG00426
|
[8] |
WENDELER C, VOLKWEIN A. Laboratory tests for theoptimizati-onof mesh size for flexible debris-flow barriers[J]. N-at Hazard Earth Sys, 2015, 15(12): 2597-2604. doi: 10.5194/nhess-15-2597-2015
|
[9] |
ARMANINI A. On the Dynamic Impact of Debris Flows[M]. Berlin: Springer, 1997.
|
[10] |
HUNGR O, MORGAN G C, KELLERHALS R. Quantitative an-alysis of debris torrent hazards for design of remedia-lmeasures[J]. Canadian Geotechnical Journal, 2011, 21(4): 663-677.
|
[11] |
TAN D Y, YIN J H, QIN J Q, et al. Experimental s-tudy on impact and deposition behaviors of multiple surges of channelized debris flow on a flexible barrier[J]. Landslides, 2020, 17(7): 1577-1589. doi: 10.1007/s10346-020-01378-7
|
[12] |
DENATALE J S, IVERSON R M, MAJOR J J, et al. Experimental Testing of Flexible Barriers for Containment of Debris Flows[M]. Reston: US Department of the Interior, US Geological Survey, 1999.
|
[13] |
LIU C, YU Z X, ZHAO S C. Quantifying the impac-t of a debris avalanche against a flexible barrier by coupled DEM-FEM analyses[J]. Landslides, 2020, 17(1): 33-47. doi: 10.1007/s10346-019-01267-8
|
[14] |
LIU C, YU Z X, ZHAO S C. A coupled SPH-DEM-FEM model for fluid-particle-structure interaction and a case study of Wenjia gully debris flow impact estimation[J]. Landslides, 2021, 18(7): 2403-2425. doi: 10.1007/s10346-021-01640-6
|
[15] |
柳春. 柔性防护结构坡面地质灾害作用的离散化分析理论与方法[D]. 成都: 西南交通大学, 2020.
LIU Chun. Theory and Method of Discrete analysis for Flexible Protective Structure against Geological Hazard on Shallow Slope[D]. Chengdu: Southwest Jiaotong University, 2020. (in Chinese)
|
[16] |
王明振, 曹东风, 吴彬, 等. 基于S-ALE流固耦合方法的飞机水上迫降动力学数值分析[J]. 重庆大学学报, 2020, 43(6): 21-29. https://www.cnki.com.cn/Article/CJFDTOTAL-FIVE202006003.htm
WANG Mingzhen, CAO Dongfeng, WU Bin, et al. Numerical analysis of aircraft dynamic behavior in ditching based on S-ALE fluid-structure interaction method[J]. Journal of Chongqing University, 2020, 43(6): 21-29. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-FIVE202006003.htm
|
[17] |
汪春辉, 王嘉安, 王超, 等. 基于S-ALE方法的圆柱体垂直出水破冰研究[J]. 力学学报, 2021, 53(11): 3110-3123. doi: 10.6052/0459-1879-21-217
WANG Chunhui, WANG Jia'an, WANG Chao, et al. Research on vertical movement of cylindrical structure out of water and breaking through ice layer based on S-ALE method[J]. Chinese Journal of Theoretical and Applied Mechanics, 2021, 53(11): 3110-3123. (in Chinese) doi: 10.6052/0459-1879-21-217
|
[18] |
JIN Y T, YU Z X, LUO L R, et al. A membrane e-quivalent method to reproduce the macroscopic mechanical responses of steel wire-ring nets under rockfall impact[J]. Thin-walled Structures, 2021, 167: 108227.
|
[19] |
贾贺, 荣伟, 陈国良. 基于LS-DYNA的降落伞伞衣织物透气性参数仿真验证[J]. 航天返回与遥感, 2009, 30(1): 15-20. https://www.cnki.com.cn/Article/CJFDTOTAL-HFYG200901004.htm
JIA He, RONG Wei, CHENG Guoliang. The use of LS-DYNA to simulate the permeability parameters of the parachute canopy[J]. Spacecraft Recovery and Remote Sensing, 2009, 30(1): 15-20. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-HFYG200901004.htm
|
[20] |
AQUELET N, WANG J. Porous parachute modelling with an Euler-Lagrange coupling[J]. European Journal of Computational Mechanics, 2007, 16(3/4): 385-399.
|
[21] |
HALLGUIST J O. LS-DYNA–3D Theoretical Manual[M]. Pittsburgh: Livermore Software Technology Co., 1991: 1-11.
|
[22] |
ZHAO L, YU Z X, HE J W, et al. Coupled numerical simulation of a flexible barrier impacted by debris flow with boulders in front[J]. Landslides, 2020, 17(12): 2723-2736.
|
[23] |
USGS Debris Flow Impact on Cable Net Mostly Satura-ted Sand/Gravel Mix[DB/OL]. https://pubs.usgs.gov/of/2007/1315/videos/1996/06-25-1996.mp4,1996-06-25/2023-09-06.
|
[24] |
TAN D Y, YIN J H, FENG W Q, et al. New Simpl-e Method for calculating impact force on flexible b-arrier considering partial muddy debris flow passing through[J]. Journal of Geotechnical and G-eoenvironmental Engineering, 2019, 145(9).
|
[1] | Collaborative risk assessment approach in geotechnical engineering[J]. Chinese Journal of Geotechnical Engineering. DOI: 10.11779/CJGE20240581 |
[2] | LI Dian-qing, XIAO Te, CAO Zi-jun, TANG Xiao-song, PHOON Kok-kwang. Auxiliary slope reliability analysis using limit equilibrium method and finite element method[J]. Chinese Journal of Geotechnical Engineering, 2016, 38(6): 1004-1013. DOI: 10.11779/CJGE201606005 |
[3] | YANG Lingqiang, MA Jing, ZHANG Sherong. Reliability analysis of stability for slopes reinforced by anti-slide piles[J]. Chinese Journal of Geotechnical Engineering, 2009, 31(8): 1299-1302. |
[4] | TAN Xiaohui, WANG Jianguo, HU Xiaojun, BI Weihua. Fuzzy random finite element reliability analysis of slope stability[J]. Chinese Journal of Geotechnical Engineering, 2009, 31(7): 991-996. |
[5] | Inspection and reliability assessment for Gandjelas concrete gravity dam[J]. Chinese Journal of Geotechnical Engineering, 2008, 30(11): 1683-1691. |
[6] | WANG Feiyue, XU Zhisheng, DONG Longjun. Stability model of tailing dams based on fuzzy random reliability[J]. Chinese Journal of Geotechnical Engineering, 2008, 30(11): 1600-1605. |
[7] | DU Yongfeng, YU Yu, LI Hui. Analysis of reliability of structural systems for stability of gravity retaining walls[J]. Chinese Journal of Geotechnical Engineering, 2008, 30(3): 349-353. |
[8] | LIU Ning, SHAO GuoJian, WANG Yuan. Reliability assessment of rockbolt reinforced underground structures influenced by seepage and underground stress field[J]. Chinese Journal of Geotechnical Engineering, 2000, 22(6): 711-715. |
[9] | Liu Ning, Guo Zhichuan, Luo Boming. Probabilistic analysis and reliability assessment for foundation settlement[J]. Chinese Journal of Geotechnical Engineering, 2000, 22(2): 143-150. |
[10] | Wu Qingxi, Lu Tairen, Ye Jun. Static and Dynamic Reliability Analysis for Abutment Stability Against Sliding[J]. Chinese Journal of Geotechnical Engineering, 1995, 17(3): 51-59. |