• 全国中文核心期刊
  • 中国科技核心期刊
  • 美国工程索引(EI)收录期刊
  • Scopus数据库收录期刊
YU Zhixiang, LUO Hongjin, ZHANG Lijun, LUO Liru, JIN Yuntao, ZHAO Lei. Coupling analysis method for flexible debris flow barriers considering water blocking and permeability effects[J]. Chinese Journal of Geotechnical Engineering, 2024, 46(8): 1695-1702. DOI: 10.11779/CJGE20230517
Citation: YU Zhixiang, LUO Hongjin, ZHANG Lijun, LUO Liru, JIN Yuntao, ZHAO Lei. Coupling analysis method for flexible debris flow barriers considering water blocking and permeability effects[J]. Chinese Journal of Geotechnical Engineering, 2024, 46(8): 1695-1702. DOI: 10.11779/CJGE20230517

Coupling analysis method for flexible debris flow barriers considering water blocking and permeability effects

More Information
  • Received Date: June 06, 2023
  • Available Online: November 29, 2023
  • To solve the dynamic effects of blocking and permeating water under the scouring effects of mudflow on flexible protection projects, a coupled S-ALE-FEM method considering the water blocking and permeability effects of mudflow flexible protection process is established. The equivalent thin film unit of the ring network considering the water-blocking-permeability effects is established according to the Euler-Lagrange coupling algorithm based on S-ALE and Ergun formula to realize the equivalent water-blocking-permeability quantification calculation of the dense curved beam-like metal ring network mudslide protection process. The kinetic analysis of the whole process of mudflow flexible protection is carried out in conjunction with the USGS mudflow flexible protection model tests, and the results are compared with the test ones. The study shows that the proposed coupled method can reproduce the full process inversion of debris flow impact, height climbing and infiltration accumulation. Compared with those of the tests, the maximum errors of debris flow accumulation height and accumulation width are 11.9% and 10.3%, respectively, and the maximum difference of debris flow slurry passage is 3.2%. For comparison between the tests and the dynamic response of key components of the flexible protection system, the maximum time-history errors of right side anchor rope, left side anchor rope and mesh are 3.2%, 16.4% and 14.4% respectively. Compared with those of the two theoretical algorithms not considering the water blocking effects, the accuracy of the calculated results of the peak debris flow impact force and the difference of debris flow slurry passage are improved by 4.69% and 17.50%, respectively. The S-A-F coupling method can solve the design and calculation challenges of mudflow flexible protection projects.
  • [1]
    朱颖彦, 潘军宇, 李朝月, 等. 中巴喀喇昆仑公路冰川泥石流[J]. 山地学报, 2022, 40(1): 71-83. https://www.cnki.com.cn/Article/CJFDTOTAL-SDYA202201006.htm

    ZHU Yingyan, PAN Junyu, LI Chaoyue, et al. Glacier debris flow along China-Pakistan International Karakoram Highway (KKH)[J]. Mountain Research, 2022, 40(1): 71-83. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-SDYA202201006.htm
    [2]
    刘波, 牛运华, 王科, 等. 乌东德水电站白滩沟泥石流特性分析与防治措施[J]. 岩土工程学报, 2016, 38(增刊1): 225-230. doi: 10.11779/CJGE2016S1042

    LIU Bo, NIU Yunhua, WANG Ke, et al. Characteristic analysis and control measures for debris flow in Baitan Gully of Wudongde Hydropower Station[J]. Chinese Journal of Geotechnical Engineering, 2016, 38(S1): 225-230. (in Chinese) doi: 10.11779/CJGE2016S1042
    [3]
    刘成清, 许城杰, 陈鑫, 等. 泥石流柔性防护网结构破坏原因分析与设计对策[J]. 水利与建筑工程学报, 2017, 15(5): 6-11.

    LIU Chenqing, XU Chenjie, CHENG Xin, et al. Failure cause analysis and countermeasures design of flexible debris flow protection system[J]. Journal of Water Resources and Architectural Engineering, 2017, 15(5): 6-11. (in Chinese)
    [4]
    肖思友, 苏立君, 姜元俊. 碎屑流冲击柔性网的离散元仿真研究[J]. 岩土工程学报, 2019, 41(3): 526-533. doi: 10.11779/CJGE201903015

    XIAO Siyou, SU Lijun, JIANG Yuanjun. Numerical investigation on flexible barriers impacted by dry granular flows using DEM modeling[J]. Chinese Journal of Geotechnical Engineering, 2019, 41(3): 526-533(in Chinese) doi: 10.11779/CJGE201903015
    [5]
    SZE H Y, HO K S, KOO C H, et al. Design of flexible barriers against sizeable landslides in Hong Kong[J]. HKIE Transactions Hong Kong Institution of Engineers, 2018, 25(2): 115-128.
    [6]
    韩玫. 汶川震区"宽缓"与"窄陡"沟道型泥石流致灾机理研究[D]. 成都: 西南交通大学, 2016.

    HAN Mei. Hazard Mechanism Research of Wide-Gentle and Narrow-Steep Channels Debris Flow in Wenchuan Earthquake Region[D]. Chengdu: Southwest Jiaotong University, 2016. (in Chinese)
    [7]
    IVERSON R M. The physics of debris flows[J]. Reviews of Geophysics, 1997, 35(3): 245-296. doi: 10.1029/97RG00426
    [8]
    WENDELER C, VOLKWEIN A. Laboratory tests for theoptimizati-onof mesh size for flexible debris-flow barriers[J]. N-at Hazard Earth Sys, 2015, 15(12): 2597-2604. doi: 10.5194/nhess-15-2597-2015
    [9]
    ARMANINI A. On the Dynamic Impact of Debris Flows[M]. Berlin: Springer, 1997.
    [10]
    HUNGR O, MORGAN G C, KELLERHALS R. Quantitative an-alysis of debris torrent hazards for design of remedia-lmeasures[J]. Canadian Geotechnical Journal, 2011, 21(4): 663-677.
    [11]
    TAN D Y, YIN J H, QIN J Q, et al. Experimental s-tudy on impact and deposition behaviors of multiple surges of channelized debris flow on a flexible barrier[J]. Landslides, 2020, 17(7): 1577-1589. doi: 10.1007/s10346-020-01378-7
    [12]
    DENATALE J S, IVERSON R M, MAJOR J J, et al. Experimental Testing of Flexible Barriers for Containment of Debris Flows[M]. Reston: US Department of the Interior, US Geological Survey, 1999.
    [13]
    LIU C, YU Z X, ZHAO S C. Quantifying the impac-t of a debris avalanche against a flexible barrier by coupled DEM-FEM analyses[J]. Landslides, 2020, 17(1): 33-47. doi: 10.1007/s10346-019-01267-8
    [14]
    LIU C, YU Z X, ZHAO S C. A coupled SPH-DEM-FEM model for fluid-particle-structure interaction and a case study of Wenjia gully debris flow impact estimation[J]. Landslides, 2021, 18(7): 2403-2425. doi: 10.1007/s10346-021-01640-6
    [15]
    柳春. 柔性防护结构坡面地质灾害作用的离散化分析理论与方法[D]. 成都: 西南交通大学, 2020.

    LIU Chun. Theory and Method of Discrete analysis for Flexible Protective Structure against Geological Hazard on Shallow Slope[D]. Chengdu: Southwest Jiaotong University, 2020. (in Chinese)
    [16]
    王明振, 曹东风, 吴彬, 等. 基于S-ALE流固耦合方法的飞机水上迫降动力学数值分析[J]. 重庆大学学报, 2020, 43(6): 21-29. https://www.cnki.com.cn/Article/CJFDTOTAL-FIVE202006003.htm

    WANG Mingzhen, CAO Dongfeng, WU Bin, et al. Numerical analysis of aircraft dynamic behavior in ditching based on S-ALE fluid-structure interaction method[J]. Journal of Chongqing University, 2020, 43(6): 21-29. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-FIVE202006003.htm
    [17]
    汪春辉, 王嘉安, 王超, 等. 基于S-ALE方法的圆柱体垂直出水破冰研究[J]. 力学学报, 2021, 53(11): 3110-3123. doi: 10.6052/0459-1879-21-217

    WANG Chunhui, WANG Jia'an, WANG Chao, et al. Research on vertical movement of cylindrical structure out of water and breaking through ice layer based on S-ALE method[J]. Chinese Journal of Theoretical and Applied Mechanics, 2021, 53(11): 3110-3123. (in Chinese) doi: 10.6052/0459-1879-21-217
    [18]
    JIN Y T, YU Z X, LUO L R, et al. A membrane e-quivalent method to reproduce the macroscopic mechanical responses of steel wire-ring nets under rockfall impact[J]. Thin-walled Structures, 2021, 167: 108227.
    [19]
    贾贺, 荣伟, 陈国良. 基于LS-DYNA的降落伞伞衣织物透气性参数仿真验证[J]. 航天返回与遥感, 2009, 30(1): 15-20. https://www.cnki.com.cn/Article/CJFDTOTAL-HFYG200901004.htm

    JIA He, RONG Wei, CHENG Guoliang. The use of LS-DYNA to simulate the permeability parameters of the parachute canopy[J]. Spacecraft Recovery and Remote Sensing, 2009, 30(1): 15-20. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-HFYG200901004.htm
    [20]
    AQUELET N, WANG J. Porous parachute modelling with an Euler-Lagrange coupling[J]. European Journal of Computational Mechanics, 2007, 16(3/4): 385-399.
    [21]
    HALLGUIST J O. LS-DYNA–3D Theoretical Manual[M]. Pittsburgh: Livermore Software Technology Co., 1991: 1-11.
    [22]
    ZHAO L, YU Z X, HE J W, et al. Coupled numerical simulation of a flexible barrier impacted by debris flow with boulders in front[J]. Landslides, 2020, 17(12): 2723-2736.
    [23]
    USGS Debris Flow Impact on Cable Net Mostly Satura-ted Sand/Gravel Mix[DB/OL]. https://pubs.usgs.gov/of/2007/1315/videos/1996/06-25-1996.mp4,1996-06-25/2023-09-06.
    [24]
    TAN D Y, YIN J H, FENG W Q, et al. New Simpl-e Method for calculating impact force on flexible b-arrier considering partial muddy debris flow passing through[J]. Journal of Geotechnical and G-eoenvironmental Engineering, 2019, 145(9).
  • Related Articles

    [1]Collaborative risk assessment approach in geotechnical engineering[J]. Chinese Journal of Geotechnical Engineering. DOI: 10.11779/CJGE20240581
    [2]LI Dian-qing, XIAO Te, CAO Zi-jun, TANG Xiao-song, PHOON Kok-kwang. Auxiliary slope reliability analysis using limit equilibrium method and finite element method[J]. Chinese Journal of Geotechnical Engineering, 2016, 38(6): 1004-1013. DOI: 10.11779/CJGE201606005
    [3]YANG Lingqiang, MA Jing, ZHANG Sherong. Reliability analysis of stability for slopes reinforced by anti-slide piles[J]. Chinese Journal of Geotechnical Engineering, 2009, 31(8): 1299-1302.
    [4]TAN Xiaohui, WANG Jianguo, HU Xiaojun, BI Weihua. Fuzzy random finite element reliability analysis of slope stability[J]. Chinese Journal of Geotechnical Engineering, 2009, 31(7): 991-996.
    [5]Inspection and reliability assessment for Gandjelas concrete gravity dam[J]. Chinese Journal of Geotechnical Engineering, 2008, 30(11): 1683-1691.
    [6]WANG Feiyue, XU Zhisheng, DONG Longjun. Stability model of tailing dams based on fuzzy random reliability[J]. Chinese Journal of Geotechnical Engineering, 2008, 30(11): 1600-1605.
    [7]DU Yongfeng, YU Yu, LI Hui. Analysis of reliability of structural systems for stability of gravity retaining walls[J]. Chinese Journal of Geotechnical Engineering, 2008, 30(3): 349-353.
    [8]LIU Ning, SHAO GuoJian, WANG Yuan. Reliability assessment of rockbolt reinforced underground structures influenced by seepage and underground stress field[J]. Chinese Journal of Geotechnical Engineering, 2000, 22(6): 711-715.
    [9]Liu Ning, Guo Zhichuan, Luo Boming. Probabilistic analysis and reliability assessment for foundation settlement[J]. Chinese Journal of Geotechnical Engineering, 2000, 22(2): 143-150.
    [10]Wu Qingxi, Lu Tairen, Ye Jun. Static and Dynamic Reliability Analysis for Abutment Stability Against Sliding[J]. Chinese Journal of Geotechnical Engineering, 1995, 17(3): 51-59.

Catalog

    Article views PDF downloads Cited by()
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return