• Indexed in Scopus
  • Source Journal for Chinese Scientific and Technical Papers and Citations
  • Included in A Guide to the Core Journal of China
  • Indexed in Ei Compendex
WANG Fang, LI Guoying, MI Zhankuan, FENG Yelin, HUANG Qingfu. Evaluation method for safety of concrete slab stress based on multi-axial strength criterion[J]. Chinese Journal of Geotechnical Engineering, 2024, 46(7): 1378-1386. DOI: 10.11779/CJGE20230515
Citation: WANG Fang, LI Guoying, MI Zhankuan, FENG Yelin, HUANG Qingfu. Evaluation method for safety of concrete slab stress based on multi-axial strength criterion[J]. Chinese Journal of Geotechnical Engineering, 2024, 46(7): 1378-1386. DOI: 10.11779/CJGE20230515

Evaluation method for safety of concrete slab stress based on multi-axial strength criterion

More Information
  • Received Date: June 06, 2023
  • Available Online: November 21, 2023
  • The concrete-faced rockfill dams (CFRDs) rely on the key impermeable structures, such as concrete slabs, for their safe operation. Ensuring the safety of the concrete slabs is of the utmost importance. The current evaluation method, which utilizes uniaxial strength, overlooks the influences of slab stress on their strength and may lead to unreasonable judgments regarding the damage zone. To address this issue, a method is proposed for evaluating the stress in the concrete slabs based on the multi-axial strength criterion. The safety of the slabs is assessed by determining the strength adjustment coefficient of concrete and the stress level index of multi-axial strength. A refined stress distribution analysis of the slabs is conducted using the cross-scale fine simulation method based on the multi-point constraint. The improved viscoelastic method is employed to comprehensively simulate the impact of dynamic and permanent deformations on the slab stress. This approach accurately depicts the progression of slab damage during an earthquake. To illustrate the effectiveness of the proposed multi-axial strength method, a 240 m-high concrete-faced rockfill dam located in a narrow valley within a seismic zone is taken as an example for comparison with the current uniaxial strength method. The results demonstrate that during the operational period, the material strength at both sides of the dam abutment is reduced, while it is enhanced on the riverbed, particularly at the bottom. Both methods yield similar conclusions regarding the tensile damage zones, but there are significant disparities in the compressive damage zones. During an earthquake, the multi-axial strength method indicates slightly smaller tensile damage zones, whereas the location and extent of the compressive damage zones differ significantly between the two methods. Considering the limitations of the uniaxial strength method in considering the influences of slab stress on their strength, it is suggested to adopt the multi-axial strength criterion as a guide for designing and constructing concrete slabs in extra-high CFRDs.

  • [1]
    湛正刚, 张合作, 程瑞林, 等. 高面板坝全寿命周期变形控制方法及应用[J]. 岩土工程学报, 2022, 44(6): 1141-1147. doi: 10.11779/CJGE202206019

    ZHAN Zhenggang, ZHANG Hezuo, CHENG Ruilin, et al. Application of methods for life-cycle deformation control of high concrete-faced rockfill dams[J]. Chinese Journal of Geotechnical Engineering, 2022, 44(6): 1141-1147. (in Chinese) doi: 10.11779/CJGE202206019
    [2]
    徐泽平, 陆希, 翟迎春, 等. 狭窄河谷中混凝土面板坝的应力变形规律及工程措施研究[J]. 水利学报, 2022, 53(12): 1397-1409. https://www.cnki.com.cn/Article/CJFDTOTAL-SLXB202212001.htm

    XU Zeping, LU Xi, ZHAI Yingchun, et al. Study on stress and deformation and engineering measures for concrete faced rockfill dam built in narrow valley[J]. Journal of Hydraulic Engineering, 2022, 53(12): 1397-1409. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-SLXB202212001.htm
    [3]
    徐泽平. 混凝土面板堆石坝关键技术与研究进展[J]. 水利学报, 2019, 50(1): 62-74. https://www.cnki.com.cn/Article/CJFDTOTAL-SLXB201901008.htm

    XU Zeping. Research progresses and key technologies of CFRD construction[J]. Journal of Hydraulic Engineering, 2019, 50(1): 62-74. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-SLXB201901008.htm
    [4]
    邹德高, 孔宪京, 刘京茂, 等. 高土石坝极限抗震能力评价量化指标研究[J]. 中国科学(技术科学), 2022, 52(12): 1831-1838. https://www.cnki.com.cn/Article/CJFDTOTAL-JEXK202212005.htm

    ZOU Degao, KONG Xianjing, LIU Jingmao, et al. Criteria for ultimate aseismic capacity of high rockfill dam[J]. Scientia Sinica (Technologica), 2022, 52(12): 1831-1838. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-JEXK202212005.htm
    [5]
    陈生水, 李国英, 傅中志. 高土石坝地震安全控制标准与极限抗震能力研究[J]. 岩土工程学报, 2013, 35(1): 59-65. http://cge.nhri.cn/cn/article/id/14913

    CHEN Shengshui, LI Guoying, FU Zhongzhi. Safety criteria and limit resistance capacity of high earth-rock dams subjected to earthquakes[J]. Chinese Journal of Geotechnical Engineering, 2013, 35(1): 59-65. (in Chinese) http://cge.nhri.cn/cn/article/id/14913
    [6]
    混凝土面板堆石坝设计规范: NB/T 10871—2021[S]. 北京: 中国水利水电出版社, 2021.

    Code for Design of Concrete Face Rockfill Dams: NB/T 10871—2021[S]. Beijing: China Water & Power Press, 2021. (in Chinese)
    [7]
    水工混凝土结构设计规范: NB/T 11011—2022[S]. 北京: 中国水利水电出版社, 2022.

    Code for Design of Hydraulic Concrete Structures: NB/T 11011—2022[S]. Beijing: China Water & Power Press, 2022. (in Chinese)
    [8]
    党发宁, 陈晶晶, 高天晴, 等. 地震输入角度对抽水蓄能高面板堆石坝动反应影响研究[J]. 中国水利水电科学研究院学报, 2022, 20(5): 402-410, 421. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGSX202205003.htm

    DANG Faning, CHEN Jingjing, GAO Tianqing, et al. Study on the influence of seismic wave input angle on dynamic response of high face slab pumped storage dam[J]. Journal of China Institute of Water Resources and Hydropower Research, 2022, 20(5): 402-410, 421. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-ZGSX202205003.htm
    [9]
    魏匡民, 陈生水, 李国英, 等. 位移多点约束法在面板堆石坝精细模拟中的应用研究[J]. 岩土工程学报, 2020, 42(4): 616-623. doi: 10.11779/CJGE202004003

    WEI Kuangmin, CHEN Shengshui, LI Guoying, et al. Application of displacement multi-point constraint refinement method in simulation of concrete-faced rockfill dams[J]. Chinese Journal of Geotechnical Engineering, 2020, 42(4): 616-623. (in Chinese) doi: 10.11779/CJGE202004003
    [10]
    魏匡民, 陈生水, 马洪玉, 等. 黏弹性方法用于面板堆石坝动力分析时必要的改进[J]. 岩土力学, 2021, 42(12): 3475-3484. https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX202112026.htm

    WEI Kuangmin, CHEN Shengshui, MA Hongyu, et al. A necessary improvement of the viscoelastic method for calculating the dynamic behaviors of the concrete faced rockfill dams[J]. Rock and Soil Mechanics, 2021, 42(12): 3475-3484. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX202112026.htm
    [11]
    沈珠江, 徐刚. 堆石料的动力变形特性[J]. 水利水运工程学报, 1996(2): 143-150. https://www.cnki.com.cn/Article/CJFDTOTAL-SLSY201804003.htm

    SHEN Zhujiang, XU Gang. Deformation behavior of rock materials under cyclic loading[J]. Hydro-Science and Engineering, 1996(2): 143-150. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-SLSY201804003.htm
    [12]
    过镇海, 王传志. 多轴应力下混凝土的强度和破坏准则研究[J]. 土木工程学报, 1991, 24(3): 1-14. https://www.cnki.com.cn/Article/CJFDTOTAL-TMGC199103000.htm

    GUO Zhenhai, WANG Chuanzhi. Investigation of strength and failure criterion of concrete under multi-axial stresses[J]. China Civil Engineering Journal, 1991, 24(3): 1-14. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-TMGC199103000.htm
    [13]
    王传志, 过镇海, 张秀琴. 二轴和三轴受压混凝土的强度试验[J]. 土木工程学报, 1987, 20(1): 15-27. https://www.cnki.com.cn/Article/CJFDTOTAL-TMGC198701001.htm

    WANG Chuanzhi, GUO Zhenhai, ZHANG Xiuqin. Strength tests for biaxial and triaxial compression concrete[J]. Chinese Journal of Civil Engineering, 1987, 20(1): 15-27. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-TMGC198701001.htm
    [14]
    杨健辉. 侧压下混凝土静态受拉与受拉疲劳性能研究[D]. 大连: 大连理工大学, 2003.

    YANG Jianhui. Research on Static Tensile and Tensile Fatigue Properties of Concrete under Lateral Compression[D]. Dalian: Dalian University of Technology, 2003. (in Chinese)
    [15]
    沈珠江. 计算土力学[M]. 上海: 上海科学技术出版社, 1990.

    SHEN Zhujiang. Computational Soil Mechanics[M]. Shanghai: Shanghai Scientific & Technical Publishers, 1990. (in Chinese)
    [16]
    李国英, 赵魁芝, 米占宽. 堆石体流变对混凝土面板坝应力变形特性的影响[J]. 岩土力学, 2005, 26(增刊1): 117-120. https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX2005S1027.htm

    LI Guoying, ZHAO Kuizhi, MI Zhankuan. Influence of rheological behaviors of rockfills on stress-strain behaviors in concrete faced rockfill dam[J]. Rock and Soil Mechanics, 2005, 26(S1): 117-120. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX2005S1027.htm
    [17]
    魏匡民, 陈生水, 李国英, 等. 地震动波动输入方法在高土石坝动力分析中的应用研究[J]. 三峡大学学报(自然科学版), 2019, 41(1): 17-23. https://www.cnki.com.cn/Article/CJFDTOTAL-WHYC201901006.htm

    WEI Kuangmin, CHEN Shengshui, LI Guoying, et al. Application of earthquake wave motion input method to high earth-rock dam dynamic analysis[J]. Journal of China Three Gorges University (Natural Sciences), 2019, 41(1): 17-23. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-WHYC201901006.htm
    [18]
    XU B, ZOU D G, KONG X J, et al. Dynamic damage evaluation on the slabs of the concrete faced rockfill dam with the plastic-damage model[J]. Computers and Geotechnics, 2015, 65: 258-265.
  • Related Articles

    [1]ZENG Zhaotian, LIN Mingyu, SUN De'an, CAO Shanshan, CHE Dongze, LIANG Zhen. Microscopic analysis of thermal conductivity of bentonite as buffer materials under alkaline-thermal conditions[J]. Chinese Journal of Geotechnical Engineering, 2024, 46(7): 1408-1417. DOI: 10.11779/CJGE20230473
    [2]WANG Cai-jin, CAI Guo-jun, WU Meng, LIU Xue-ning, LIU Song-yu. Prediction of thermal conductivity of soils based on artificial intelligence algorithm[J]. Chinese Journal of Geotechnical Engineering, 2022, 44(10): 1899-1907. DOI: 10.11779/CJGE202210016
    [3]XU Jie, HU Hai-tao, ZHENG Zhi. Effects of compaction and water content on thermal conductivity of unsaturated soils[J]. Chinese Journal of Geotechnical Engineering, 2020, 42(S1): 244-248. DOI: 10.11779/CJGE2020S1048
    [4]TAN Yun-zhi, YU Bo, HU Xin-jiang, LIU Xiao-ling. Prediction model for thermal conductivity of unsaturated soil[J]. Chinese Journal of Geotechnical Engineering, 2013, 35(zk1): 129-133.
    [5]LIU Chen-hui, ZHOU Dong, WU Heng. Measurement and prediction of temperature effects of thermal conductivity of soils[J]. Chinese Journal of Geotechnical Engineering, 2011, 33(12): 1877-1886.
    [6]Thermal conductivity of compacted GMZ01 bentonite[J]. Chinese Journal of Geotechnical Engineering, 2010, 32(6).
    [7]WANG Baojun. Theories and methods for soil grain orientation distribution in SEM by standard deviational ellipse[J]. Chinese Journal of Geotechnical Engineering, 2009, 31(7): 1082-1087.
    [8]TU Xinbin, DAI Fuchu. Analytical solution for one-dimensional heat transfer equation of soil and evaluation for thermal diffusivity[J]. Chinese Journal of Geotechnical Engineering, 2008, 30(5): 652-657.
    [9]TANG Chaosheng, SHI Bin, WANG Baojun. Factors affecting analysis of soil microstructure using SEM[J]. Chinese Journal of Geotechnical Engineering, 2008, 30(4): 560-565.
    [10]LI Wenping, ZHANG Zhiyong, SUN Ruhua, WANG Weili, LI Xiaoqin. High pressure K0 creep experiment and the anisotropy of microstructure of deep buried clay[J]. Chinese Journal of Geotechnical Engineering, 2006, 28(10): 1185-1190.
  • Cited by

    Periodical cited type(3)

    1. 杨靖. 基于Rosin-Rammler的离散元扩大头抗浮锚杆抗拔力学特性影响研究. 工程技术研究. 2024(05): 4-7 .
    2. 宋朝阳,崔泽升,王子雷,王强,荆国业,李英全. 不同钻进参数下反井钻机扩孔钻进速率与岩渣特征试验研究. 建井技术. 2024(03): 68-73+67 .
    3. 陈辰,郭宏海,傅杰,罗星臣. 盾构机扁齿型和球齿型镶齿滚刀破岩性能对比研究. 人民长江. 2024(08): 174-179+186 .

    Other cited types(2)

Catalog

    HUANG Qingfu

    1. On this Site
    2. On Google Scholar
    3. On PubMed
    Article views (458) PDF downloads (67) Cited by(5)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return