Citation: | WU Kai, CHEN Renpeng, MENG Fanyan, WANG Hanlin, CHENG Hongzhan. Centrifuge modeling of excavation and numerical analyses of soil arching below excavation base[J]. Chinese Journal of Geotechnical Engineering, 2024, 46(9): 1936-1944. DOI: 10.11779/CJGE20230427 |
[1] |
陈仁朋, 李君, 陈云敏, 等. 干砂盾构开挖面稳定性模型试验研究[J]. 岩土工程学报, 2011, 33(1): 117-122. http://cge.nhri.cn/article/id/12371
CHEN Renpeng, LI Jun, CHEN Yunmin, et al. Large-scale tests on face stability of shield tunnelling in dry cohesionless soil[J]. Chinese Journal of Geotechnical Engineering, 2011, 33(1): 117-122. (in Chinese) http://cge.nhri.cn/article/id/12371
|
[2] |
KARL T. Theoretical Soil Mechanics[M]. New York: J Wiley and Sons, Inc, 1943.
|
[3] |
付海平, 郑俊杰, 赖汉江. 桩承式路堤"土拱结构" 形成演化规律离散元分析[J]. 岩土工程学报, 2017, 39(11): 2050-2057. doi: 10.11779/CJGE201711013
FU Haiping, ZHENG Junjie, LAI Hanjiang. Discrete element analysis of the development and evolution of "soil arching" within a piled embankment[J]. Chinese Journal of Geotechnical Engineering, 2017, 39(11): 2050-2057. (in Chinese) doi: 10.11779/CJGE201711013
|
[4] |
应宏伟, 蒋波, 谢康和. 考虑土拱效应的挡土墙主动土压力分布[J]. 岩土工程学报, 2007, 29(5): 717-722. doi: 10.3321/j.issn:1000-4548.2007.05.014
YING Hongwei, JIANG Bo, XIE Kanghe. Distribution of active earth pressure against retaining walls considering arching effects[J]. Chinese Journal of Geotechnical Engineering, 2007, 29(5): 717-722. (in Chinese) doi: 10.3321/j.issn:1000-4548.2007.05.014
|
[5] |
向先超, 张华, 蒋国盛, 等. 基于颗粒流的抗滑桩土拱效应研究[J]. 岩土工程学报, 2011, 33(3): 386-391. http://cge.nhri.cn/article/id/13952
XIANG Xianchao, ZHANG Hua, JIANG Guosheng, et al. Soil arching effect of anti-slide piles based on particle flow method[J]. Chinese Journal of Geotechnical Engineering, 2011, 33(3): 386-391. (in Chinese) http://cge.nhri.cn/article/id/13952
|
[6] |
MENG F Y, CHEN R P, XIE S W, et al. Excavation-induced arching effect below base level and responses of long-collinear underlying existing tunnel[J]. Tunnelling and Underground Space Technology, 2022, 123: 104417. doi: 10.1016/j.tust.2022.104417
|
[7] |
MENG F Y, CHEN R P, WU H N, et al. Observed behaviors of a long and deep excavation and collinear underlying tunnels in Shenzhen granite residual soil[J]. Tunnelling and Underground Space Technology, 2020, 103: 103504. doi: 10.1016/j.tust.2020.103504
|
[8] |
郑刚. 软土地区基坑工程变形控制方法及工程应用[J]. 岩土工程学报, 2022, 44(1): 1-36. doi: 10.11779/CJGE202201001
ZHENG Gang. Method and application of deformation control of excavations in soft ground[J]. Chinese Journal of Geotechnical Engineering, 2022, 44(1): 1-36. (in Chinese) doi: 10.11779/CJGE202201001
|
[9] |
黄茂松, 任青, 王卫东, 等. 深层开挖条件下抗拔桩极限承载力分析[J]. 岩土工程学报, 2007, 29(11): 1689-1695. doi: 10.3321/j.issn:1000-4548.2007.11.016
HUANG Maosong, REN Qing, WANG Weidong, et al. Analysis for ultimate uplift capacity of tension piles under deep excavation[J]. Chinese Journal of Geotechnical Engineering, 2007, 29(11): 1689-1695. (in Chinese) doi: 10.3321/j.issn:1000-4548.2007.11.016
|
[10] |
郭鹏飞, 杨龙才, 周顺华, 等. 基坑开挖引起下卧隧道隆起变形的实测数据分析[J]. 岩土力学, 2016, 37(增刊2): 613-621. https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX2016S2077.htm
GUO Pengfei, YANG Longcai, ZHOU Shunhua, et al. Measurement data analyses of heave deformation of shield tunnels due to overlying pit excavation[J]. Rock and Soil Mechanics, 2016, 37(S2): 613-621. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX2016S2077.htm
|
[11] |
MENG F Y, CHEN R P, XU Y, et al. Contributions to responses of existing tunnel subjected to nearby excavation: a review[J]. Tunnelling and Underground Space Technology, 2022, 119: 104195. doi: 10.1016/j.tust.2021.104195
|
[12] |
魏纲. 基坑开挖对下方既有盾构隧道影响的实测与分析[J]. 岩土力学, 2013, 34(5): 1421-1428. https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201305029.htm
WEI Gang. Measurement and analysis of impact of foundation pit excavation on below existed shield tunnels[J]. Rock and Soil Mechanics, 2013, 34(5): 1421-1428. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201305029.htm
|
[13] |
陈云敏. 离心超重力实验: 探索多相介质演变的革命性手段[J]. 浙江大学学报(工学版), 2020, 54(4): 631-632. https://www.cnki.com.cn/Article/CJFDTOTAL-ZDZC202004001.htm
CHEN Yunmin. Centrifugal hypergravity experiment: a revolutionary means to explore the evolution of multiphase media[J]. Journal of Zhejiang University (Engineering Science), 2020, 54(4): 631-632. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-ZDZC202004001.htm
|
[14] |
包承纲. 我国岩土离心模拟技术的应用与发展[J]. 长江科学院院报, 2013, 30(11): 55-66, 71. doi: 10.3969/j.issn.1001-5485.2013.11.012
BAO Chenggang. Application and development of centrifugal modeling technology for geotechnical engineering in China[J]. Journal of Yangtze River Scientific Research Institute, 2013, 30(11): 55-66, 71. (in Chinese) doi: 10.3969/j.issn.1001-5485.2013.11.012
|
[15] |
NG C W W, SHI J W, HONG Y. Three-dimensional centrifuge modelling of basement excavation effects on an existing tunnel in dry sand[J]. Canadian Geotechnical Journal, 2013, 50(8): 874-888. doi: 10.1139/cgj-2012-0423
|
[16] |
SHI J W, DING C, NG C W W, et al. Effects of overconsolidation ratio on tunnel responses due to overlying basement excavation in clay[J]. Tunnelling and Underground Space Technology, 2020, 97: 103247. doi: 10.1016/j.tust.2019.103247
|
[17] |
陈仁朋, 刘书伦, 孟凡衍, 等. 软黏土地层基坑开挖对旁侧隧道影响离心模型试验研究[J]. 岩土工程学报, 2020, 42(6): 1132-1138. doi: 10.11779/CJGE202006018
CHEN Renpeng, LIU Shulun, MENG Fanyan, et al. Centrifuge modeling of excavation effects on a nearby tunnel in soft clay[J]. Chinese Journal of Geotechnical Engineering, 2020, 42(6): 1132-1138. (in Chinese) doi: 10.11779/CJGE202006018
|
[18] |
刘炀镔, 夏才初, 徐晨, 等. 窄基坑围护墙插入深度优化解析及离心试验研究[J]. 岩石力学与工程学报, 2020, 39(3): 593-607. https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX202003014.htm
LIU Yangbin, XIA Caichu, XU Chen, et al. Analytical solution and centrifugal test for the optimization of retaining wall insertion depth in narrow foundation pits[J]. Chinese Journal of Rock Mechanics and Engineering, 2020, 39(3): 593-607. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX202003014.htm
|
[19] |
马险峰, 孔令刚, 方薇, 等. 砂雨法试样制备平行试验研究[J]. 岩土工程学报, 2014, 36(10): 1791-1801. doi: 10.11779/CJGE201410005
MA Xianfeng, KONG Linggang, FANG Wei, et al. Parallel tests on preparation of samples with sand pourer[J]. Chinese Journal of Geotechnical Engineering, 2014, 36(10): 1791-1801. (in Chinese) doi: 10.11779/CJGE201410005
|
[20] |
ATKINSON J H, SALLFORS G. Experimental determination of stress-strain-time characteristics in laboratory and in-situ tests[C]// Proceedings of 10th European Conference on Soil Mechanics and Foundation Engineering, Balkema, Rotterdam, Netherlands, 1991: 915-956.
|
[21] |
顾晓强, 吴瑞拓, 梁发云, 等. 上海土体小应变硬化模型整套参数取值方法及工程验证[J]. 岩土力学, 2021, 42(3): 833-845. https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX202103026.htm
GU Xiaoqiang, WU Ruituo, LIANG Fayun, et al. On HSS model parameters for Shanghai soils with engineering verification[J]. Rock and Soil Mechanics, 2021, 42(3): 833-845. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX202103026.htm
|
[22] |
MENG F Y, CHEN R P, LIU Y, et al. Impacts of reinforced wall on nearby excavation-induced tunnel behaviors: a centrifugal and numerical study[J]. Tunnelling and Underground Space Technology, 2023, 132: 104903. doi: 10.1016/j.tust.2022.104903
|
[23] |
MAHDI A N, HAN J. Spring-based trapdoor tests investigating soil arching stability in embankment fill under localized surface loading[J]. Journal of Geotechnical and Geoenvironmental Engineering, 2021, 147(9): 04021087. doi: 10.1061/(ASCE)GT.1943-5606.0002601
|
[24] |
雷华阳, 刘旭, 加瑞, 等. 考虑土拱渐进发展的松动土压力研究[J]. 岩土工程学报, 2021, 43(8): 1434-1442. doi: 10.11779/CJGE202108008
LEI Huayang, LIU Xu, JIA Rui, et al. Loosening earth pressure considering progressive development of soil arching[J]. Chinese Journal of Geotechnical Engineering, 2021, 43(8): 1434-1442. (in Chinese) doi: 10.11779/CJGE202108008
|
[25] |
LIN X T, CHEN R P, WU H N, et al. Three-dimensional stress-transfer mechanism and soil arching evolution induced by shield tunneling in sandy ground[J]. Tunnelling and Underground Space Technology, 2019, 93: 103104. doi: 10.1016/j.tust.2019.103104
|
[26] |
崔晓艳, 庄妍, 肖衡林, 等. 桩承式路堤中土拱效应可视化模型试验研究[J]. 岩石力学与工程学报, 2020, 39(增刊1): 3150-3158. https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX2020S1057.htm
CUI Xiaoyan, ZHUANG Yan, XIAO Henglin, et al. Investigation on soil arching effect in visual model test of pile-supported embankment[J]. Chinese Journal of Rock Mechanics and Engineering, 2020, 39(S1): 3150-3158. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX2020S1057.htm
|
[27] |
王曙光, 李钦锐, 李建民. 地基回弹变形计算若干问题探讨[J]. 土木工程学报, 2020, 53(8): 108-115. https://www.cnki.com.cn/Article/CJFDTOTAL-TMGC202008012.htm
WANG Shuguang, LI Qinrui, LI Jianmin. Discussion on some issues of resilient deformation calculation[J]. China Civil Engineering Journal, 2020, 53(8): 108-115. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-TMGC202008012.htm
|
[28] |
张思安, 陈龙珠. 基坑坑底土卸载残余应力特性及其应用[J]. 土木工程与管理学报, 2020, 37(5): 122-127. https://www.cnki.com.cn/Article/CJFDTOTAL-WHCJ202005019.htm
ZHANG Sian, CHEN Longzhu. Characteristics and application of unloading residual stress of foundation pit bottom soil[J]. Journal of Civil Engineering and Management, 2020, 37(5): 122-127. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-WHCJ202005019.htm
|
[29] |
建筑地基基础设计规范: GB 50007—2011[S]. 北京: 中国计划出版社, 2012.
Code for Design of Building Foundation: GB 50007—2011[S]. Beijing: China Planning Press, 2012. (in Chinese)
|
[30] |
LAI H J, ZHENG J J, ZHANG R J, et al. Classification and characteristics of soil arching structures in pile-supported embankments[J]. Computers and Geotechnics, 2018, 98: 153-171. doi: 10.1016/j.compgeo.2018.02.007
|
[31] |
CHEVALIER B, COMBE G, VILLARD P. Experimental and discrete element modeling studies of the trapdoor problem: Influence of the macro-mechanical frictional parameters[J]. Acta Geotechnica, 2012, 7(1): 15-39. doi: 10.1007/s11440-011-0152-5
|