• 全国中文核心期刊
  • 中国科技核心期刊
  • 美国工程索引(EI)收录期刊
  • Scopus数据库收录期刊
WU Kai, CHEN Renpeng, MENG Fanyan, WANG Hanlin, CHENG Hongzhan. Centrifuge modeling of excavation and numerical analyses of soil arching below excavation base[J]. Chinese Journal of Geotechnical Engineering, 2024, 46(9): 1936-1944. DOI: 10.11779/CJGE20230427
Citation: WU Kai, CHEN Renpeng, MENG Fanyan, WANG Hanlin, CHENG Hongzhan. Centrifuge modeling of excavation and numerical analyses of soil arching below excavation base[J]. Chinese Journal of Geotechnical Engineering, 2024, 46(9): 1936-1944. DOI: 10.11779/CJGE20230427

Centrifuge modeling of excavation and numerical analyses of soil arching below excavation base

More Information
  • Received Date: May 16, 2023
  • Available Online: March 24, 2024
  • Soil arching may be generated below excavation base. This kind of soil arching is featured with different boundary conditions of mechanism and displacement compared with that above trapdoor, of which the development orientation is the same as that of soil gravity stress. To investigate the characteristics of the soil arching below excavation base, the centrifuge modeling of excavation with dry sand layer is conducted. Thereafter, a sequence of numerical analyses of the soil arching below excavation base are carried out under different excavation depths and widths. The research shows that the differential deformation and stress transfer are observed and the soil arching below excavation base is confirmed. The excavation base is divided into the loosened zone and the arching zone. The loosened zone exhibits a significant decrease in the relative density, while the arching zone accounts for about 80% basal heave. As the key to the formation and evolution of soil arching below excavation base, the depth and width of excavation are positively correlated with the range of the loosened zone and arching zone. The conclusions can provide a reference for the prediction of excavation-induced ground response and the deformation control of the underlying existing underground structures.
  • [1]
    陈仁朋, 李君, 陈云敏, 等. 干砂盾构开挖面稳定性模型试验研究[J]. 岩土工程学报, 2011, 33(1): 117-122. http://cge.nhri.cn/article/id/12371

    CHEN Renpeng, LI Jun, CHEN Yunmin, et al. Large-scale tests on face stability of shield tunnelling in dry cohesionless soil[J]. Chinese Journal of Geotechnical Engineering, 2011, 33(1): 117-122. (in Chinese) http://cge.nhri.cn/article/id/12371
    [2]
    KARL T. Theoretical Soil Mechanics[M]. New York: J Wiley and Sons, Inc, 1943.
    [3]
    付海平, 郑俊杰, 赖汉江. 桩承式路堤"土拱结构" 形成演化规律离散元分析[J]. 岩土工程学报, 2017, 39(11): 2050-2057. doi: 10.11779/CJGE201711013

    FU Haiping, ZHENG Junjie, LAI Hanjiang. Discrete element analysis of the development and evolution of "soil arching" within a piled embankment[J]. Chinese Journal of Geotechnical Engineering, 2017, 39(11): 2050-2057. (in Chinese) doi: 10.11779/CJGE201711013
    [4]
    应宏伟, 蒋波, 谢康和. 考虑土拱效应的挡土墙主动土压力分布[J]. 岩土工程学报, 2007, 29(5): 717-722. doi: 10.3321/j.issn:1000-4548.2007.05.014

    YING Hongwei, JIANG Bo, XIE Kanghe. Distribution of active earth pressure against retaining walls considering arching effects[J]. Chinese Journal of Geotechnical Engineering, 2007, 29(5): 717-722. (in Chinese) doi: 10.3321/j.issn:1000-4548.2007.05.014
    [5]
    向先超, 张华, 蒋国盛, 等. 基于颗粒流的抗滑桩土拱效应研究[J]. 岩土工程学报, 2011, 33(3): 386-391. http://cge.nhri.cn/article/id/13952

    XIANG Xianchao, ZHANG Hua, JIANG Guosheng, et al. Soil arching effect of anti-slide piles based on particle flow method[J]. Chinese Journal of Geotechnical Engineering, 2011, 33(3): 386-391. (in Chinese) http://cge.nhri.cn/article/id/13952
    [6]
    MENG F Y, CHEN R P, XIE S W, et al. Excavation-induced arching effect below base level and responses of long-collinear underlying existing tunnel[J]. Tunnelling and Underground Space Technology, 2022, 123: 104417. doi: 10.1016/j.tust.2022.104417
    [7]
    MENG F Y, CHEN R P, WU H N, et al. Observed behaviors of a long and deep excavation and collinear underlying tunnels in Shenzhen granite residual soil[J]. Tunnelling and Underground Space Technology, 2020, 103: 103504. doi: 10.1016/j.tust.2020.103504
    [8]
    郑刚. 软土地区基坑工程变形控制方法及工程应用[J]. 岩土工程学报, 2022, 44(1): 1-36. doi: 10.11779/CJGE202201001

    ZHENG Gang. Method and application of deformation control of excavations in soft ground[J]. Chinese Journal of Geotechnical Engineering, 2022, 44(1): 1-36. (in Chinese) doi: 10.11779/CJGE202201001
    [9]
    黄茂松, 任青, 王卫东, 等. 深层开挖条件下抗拔桩极限承载力分析[J]. 岩土工程学报, 2007, 29(11): 1689-1695. doi: 10.3321/j.issn:1000-4548.2007.11.016

    HUANG Maosong, REN Qing, WANG Weidong, et al. Analysis for ultimate uplift capacity of tension piles under deep excavation[J]. Chinese Journal of Geotechnical Engineering, 2007, 29(11): 1689-1695. (in Chinese) doi: 10.3321/j.issn:1000-4548.2007.11.016
    [10]
    郭鹏飞, 杨龙才, 周顺华, 等. 基坑开挖引起下卧隧道隆起变形的实测数据分析[J]. 岩土力学, 2016, 37(增刊2): 613-621. https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX2016S2077.htm

    GUO Pengfei, YANG Longcai, ZHOU Shunhua, et al. Measurement data analyses of heave deformation of shield tunnels due to overlying pit excavation[J]. Rock and Soil Mechanics, 2016, 37(S2): 613-621. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX2016S2077.htm
    [11]
    MENG F Y, CHEN R P, XU Y, et al. Contributions to responses of existing tunnel subjected to nearby excavation: a review[J]. Tunnelling and Underground Space Technology, 2022, 119: 104195. doi: 10.1016/j.tust.2021.104195
    [12]
    魏纲. 基坑开挖对下方既有盾构隧道影响的实测与分析[J]. 岩土力学, 2013, 34(5): 1421-1428. https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201305029.htm

    WEI Gang. Measurement and analysis of impact of foundation pit excavation on below existed shield tunnels[J]. Rock and Soil Mechanics, 2013, 34(5): 1421-1428. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201305029.htm
    [13]
    陈云敏. 离心超重力实验: 探索多相介质演变的革命性手段[J]. 浙江大学学报(工学版), 2020, 54(4): 631-632. https://www.cnki.com.cn/Article/CJFDTOTAL-ZDZC202004001.htm

    CHEN Yunmin. Centrifugal hypergravity experiment: a revolutionary means to explore the evolution of multiphase media[J]. Journal of Zhejiang University (Engineering Science), 2020, 54(4): 631-632. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-ZDZC202004001.htm
    [14]
    包承纲. 我国岩土离心模拟技术的应用与发展[J]. 长江科学院院报, 2013, 30(11): 55-66, 71. doi: 10.3969/j.issn.1001-5485.2013.11.012

    BAO Chenggang. Application and development of centrifugal modeling technology for geotechnical engineering in China[J]. Journal of Yangtze River Scientific Research Institute, 2013, 30(11): 55-66, 71. (in Chinese) doi: 10.3969/j.issn.1001-5485.2013.11.012
    [15]
    NG C W W, SHI J W, HONG Y. Three-dimensional centrifuge modelling of basement excavation effects on an existing tunnel in dry sand[J]. Canadian Geotechnical Journal, 2013, 50(8): 874-888. doi: 10.1139/cgj-2012-0423
    [16]
    SHI J W, DING C, NG C W W, et al. Effects of overconsolidation ratio on tunnel responses due to overlying basement excavation in clay[J]. Tunnelling and Underground Space Technology, 2020, 97: 103247. doi: 10.1016/j.tust.2019.103247
    [17]
    陈仁朋, 刘书伦, 孟凡衍, 等. 软黏土地层基坑开挖对旁侧隧道影响离心模型试验研究[J]. 岩土工程学报, 2020, 42(6): 1132-1138. doi: 10.11779/CJGE202006018

    CHEN Renpeng, LIU Shulun, MENG Fanyan, et al. Centrifuge modeling of excavation effects on a nearby tunnel in soft clay[J]. Chinese Journal of Geotechnical Engineering, 2020, 42(6): 1132-1138. (in Chinese) doi: 10.11779/CJGE202006018
    [18]
    刘炀镔, 夏才初, 徐晨, 等. 窄基坑围护墙插入深度优化解析及离心试验研究[J]. 岩石力学与工程学报, 2020, 39(3): 593-607. https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX202003014.htm

    LIU Yangbin, XIA Caichu, XU Chen, et al. Analytical solution and centrifugal test for the optimization of retaining wall insertion depth in narrow foundation pits[J]. Chinese Journal of Rock Mechanics and Engineering, 2020, 39(3): 593-607. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX202003014.htm
    [19]
    马险峰, 孔令刚, 方薇, 等. 砂雨法试样制备平行试验研究[J]. 岩土工程学报, 2014, 36(10): 1791-1801. doi: 10.11779/CJGE201410005

    MA Xianfeng, KONG Linggang, FANG Wei, et al. Parallel tests on preparation of samples with sand pourer[J]. Chinese Journal of Geotechnical Engineering, 2014, 36(10): 1791-1801. (in Chinese) doi: 10.11779/CJGE201410005
    [20]
    ATKINSON J H, SALLFORS G. Experimental determination of stress-strain-time characteristics in laboratory and in-situ tests[C]// Proceedings of 10th European Conference on Soil Mechanics and Foundation Engineering, Balkema, Rotterdam, Netherlands, 1991: 915-956.
    [21]
    顾晓强, 吴瑞拓, 梁发云, 等. 上海土体小应变硬化模型整套参数取值方法及工程验证[J]. 岩土力学, 2021, 42(3): 833-845. https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX202103026.htm

    GU Xiaoqiang, WU Ruituo, LIANG Fayun, et al. On HSS model parameters for Shanghai soils with engineering verification[J]. Rock and Soil Mechanics, 2021, 42(3): 833-845. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX202103026.htm
    [22]
    MENG F Y, CHEN R P, LIU Y, et al. Impacts of reinforced wall on nearby excavation-induced tunnel behaviors: a centrifugal and numerical study[J]. Tunnelling and Underground Space Technology, 2023, 132: 104903. doi: 10.1016/j.tust.2022.104903
    [23]
    MAHDI A N, HAN J. Spring-based trapdoor tests investigating soil arching stability in embankment fill under localized surface loading[J]. Journal of Geotechnical and Geoenvironmental Engineering, 2021, 147(9): 04021087. doi: 10.1061/(ASCE)GT.1943-5606.0002601
    [24]
    雷华阳, 刘旭, 加瑞, 等. 考虑土拱渐进发展的松动土压力研究[J]. 岩土工程学报, 2021, 43(8): 1434-1442. doi: 10.11779/CJGE202108008

    LEI Huayang, LIU Xu, JIA Rui, et al. Loosening earth pressure considering progressive development of soil arching[J]. Chinese Journal of Geotechnical Engineering, 2021, 43(8): 1434-1442. (in Chinese) doi: 10.11779/CJGE202108008
    [25]
    LIN X T, CHEN R P, WU H N, et al. Three-dimensional stress-transfer mechanism and soil arching evolution induced by shield tunneling in sandy ground[J]. Tunnelling and Underground Space Technology, 2019, 93: 103104. doi: 10.1016/j.tust.2019.103104
    [26]
    崔晓艳, 庄妍, 肖衡林, 等. 桩承式路堤中土拱效应可视化模型试验研究[J]. 岩石力学与工程学报, 2020, 39(增刊1): 3150-3158. https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX2020S1057.htm

    CUI Xiaoyan, ZHUANG Yan, XIAO Henglin, et al. Investigation on soil arching effect in visual model test of pile-supported embankment[J]. Chinese Journal of Rock Mechanics and Engineering, 2020, 39(S1): 3150-3158. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX2020S1057.htm
    [27]
    王曙光, 李钦锐, 李建民. 地基回弹变形计算若干问题探讨[J]. 土木工程学报, 2020, 53(8): 108-115. https://www.cnki.com.cn/Article/CJFDTOTAL-TMGC202008012.htm

    WANG Shuguang, LI Qinrui, LI Jianmin. Discussion on some issues of resilient deformation calculation[J]. China Civil Engineering Journal, 2020, 53(8): 108-115. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-TMGC202008012.htm
    [28]
    张思安, 陈龙珠. 基坑坑底土卸载残余应力特性及其应用[J]. 土木工程与管理学报, 2020, 37(5): 122-127. https://www.cnki.com.cn/Article/CJFDTOTAL-WHCJ202005019.htm

    ZHANG Sian, CHEN Longzhu. Characteristics and application of unloading residual stress of foundation pit bottom soil[J]. Journal of Civil Engineering and Management, 2020, 37(5): 122-127. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-WHCJ202005019.htm
    [29]
    建筑地基基础设计规范: GB 50007—2011[S]. 北京: 中国计划出版社, 2012.

    Code for Design of Building Foundation: GB 50007—2011[S]. Beijing: China Planning Press, 2012. (in Chinese)
    [30]
    LAI H J, ZHENG J J, ZHANG R J, et al. Classification and characteristics of soil arching structures in pile-supported embankments[J]. Computers and Geotechnics, 2018, 98: 153-171. doi: 10.1016/j.compgeo.2018.02.007
    [31]
    CHEVALIER B, COMBE G, VILLARD P. Experimental and discrete element modeling studies of the trapdoor problem: Influence of the macro-mechanical frictional parameters[J]. Acta Geotechnica, 2012, 7(1): 15-39. doi: 10.1007/s11440-011-0152-5

Catalog

    Article views (536) PDF downloads (153) Cited by()
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return